Physikerin der Woche 2024

Starting from January 2018, the German Physical Society's working group on equal opportunities (AKC) has been regularly featuring women in physics who are based in Germany or German women who are working in the field of physics abroad.

If you are a woman working in the field of physics in Germany or a German woman working in physics abroad and would like to showcase your work through the "Physikerin der Woche" initiative, then don't hesitate to get in touch with Dr. Ulrike Boehm at . This opportunity is open to women in physics at all career stages, whether they are from academia or industry. Moreover, you are also welcome to recommend suitable candidates for the initiative.

You can find an article and posters about our initiative in the April 2018 issue and 2021 / 2022 / 2023 issues of the Physik-Journal. You are welcome to print the posters and promote our initiative at your research institution. To view previous participants from past years, please refer to the following resources: 2018, 2019, 2020, 2021, 2022 and 2023.

Further interesting information on the topic of career preparation for physicists can also be found on the following DPG pages:  Berufsvorbereitendes Programm der DPG and DPG-Berufsvorbereitung online der jDPG

March

Prof. Dr. Nahid Talebi (Kiel) - Kalenderwoche 11

Nahid_Talebi_Physikerin.jpg
Nahid_Talebi_Physikerin.jpg

Nahid is an Iranian/German physicist who focuses her research on nanooptics, exploring the intricate dynamics of light-material interactions at the nanoscale. She leads the Nanooptics research group at the Christian-Albrecht University of Kiel. Her work primarily revolves around elucidating the interplay between light and material excitations, with a particular emphasis on probing these phenomena using electron beams.
Her expertise encompasses theoretical and experimental explorations of the interactions between light, electron beams, and matter. She leverages electron microscopes as a toolbox to better explore quantum dynamics, with a focus on sub-femtosecond dynamics and nanometer spatial resolutions.
Central to Nahid's contributions is the development of a numerical Maxwell-Schrödinger toolbox, enabling her to explore dynamic processes beyond adiabatic and nonrecoil approximations. Additionally, she has pioneered a novel method for investigating the decoherence dynamics of material excitations, such as exciton-polaritons and electron-phonon interactions in two-dimensional materials.
In 2018, she was awarded an ERC Starting Grant to further her investigations, followed by an ERC Proof-of-Concept Grant in 2024 to advance her innovative prototypes toward commercialization.

Foto-Rechte: Julia Siekmann

M.Sc. Sahar Forouzan (Deggendorf) - Kalenderwoche 10

Sahar_Forouzan_Physikerin.JPG
Sahar_Forouzan_Physikerin.JPG

Sahar is a Ph.D. student at the Technische Hochschule Deggendorf and the FAU Erlangen. In her dissertation, she researches the treatment of ceramics using microwave technology. The application of microwaves offers an opportunity to save a substantial amount of energy in the ceramic industry and significantly reduce our reliance on fossil fuels. The aspiration is to manufacture ceramics in an environmentally friendly manner. This project was a collaboration between the Deggendorf Institute of Technology and Schlagman Poroton Company.

Foto-Rechte: M.Sc. Sahar Forouzan

Februar

M.Sc. Serena Giardino (Potsdam) - Kalenderwoche 9

Serena_Giardino_Physikerin.jpg
Serena_Giardino_Physikerin.jpg
Serena is a final-year PhD student at the Max Planck Institute for Gravitational Physics and the University of Heidelberg, in the group of Prof. Lavinia Heisenberg. Her research focuses on understanding the true nature of gravity. She explores modified theories of gravity that might explain the accelerated expansion of the universe without resorting to the mysterious dark energy and works on figuring out what the cosmological implications of going beyond Einstein's General Relativity are for both the early and the late universe. Specifically, she works on a novel description unifying different gravity theories based on thermodynamics and on constructing alternatives to the Big Bang model, such as cosmological bounces, that solve some of the puzzles of standard cosmology.
She enjoys bringing science to the public in several languages and is active in her institute's Equal Opportunity Office.

Foto-Rechte: M.Sc. Serena Giardino

M.Sc. Chloé Gaudu (Wuppertal) - Kalenderwoche 8

Chloe_Gaudu_Physikerin.jpg
Chloe_Gaudu_Physikerin.jpg

Chloé is a Ph.D. student in the Astroparticle physics group at University of Wuppertal, working with hadronic interaction models to solve the “Muon Puzzle.”

Established state-of-the-art models, including EPOS-LHC, Sibyll 2.3d, and QGSJet-II.04, are utilized by astroparticle physicists to describe the hadronic interactions within extensive air showers (EAS) resulting from cosmic ray interactions with Earth's atmosphere. Though developed by separate teams with differing initial assumptions, these models converge on the following consensus: air shower simulations exhibit a muon deficit compared to experimental measurements of the Pierre Auger Observatory — referred to as the “Muon Puzzle.” To solve this puzzle, Chloé works with the Angantyr model of Pythia 8, yet another hadronic interaction model tailored for Large Hadron Collider experiments. Angantyr introduced new features aimed at enhancing descriptions of hadron-nucleus interactions, thus motivating its potential application in air shower studies. The evaluation and validation of this model are done using the analysis framework Rivet, which requires specific plug-ins, of which Chloé has written several for each experimental dataset chosen as a reference. The next steps for her work would be to create a tuned version of Pythia 8 by adjusting parameter values, shifting the physics of Pythia to better describe hadron productions in pion-proton and pion-carbon interactions while keeping intact the knowledge they have gathered so far from proton-proton interactions. This tuned Pythia 8 would be used in codes, like Corsika 8 or MCEq, to probe astroparticle observables, allowing comparison with experimental datasets and previous simulations with the aim of a more accurate description of muon production in EAS.

One should keep in mind that this tuning endeavor is a multi-dimensional task demanding various expertise in the fields of astroparticle and particle physics, from the experimental datasets, model parameters, and observable weight selection for meaningful interpretation, needing a close collaboration between working groups.

Foto-Rechte: Pavlo Plotko

Dr. Esra Bulbul (Garching/Munich) - Kalenderwoche 7

Esra_Bulbul_Physikerin.jpeg
Esra_Bulbul_Physikerin.jpeg
Esra is a Turkish-American astrophysicist who currently leads the Cluster and Cosmology Working Group within the eROSITA Collaboration. She also works as a research group leader in the Department for Highenergy-Astrophysics at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. Esra is an expert in the application of multi-wavelength surveys of galaxy clusters in cosmological research, as well as the studies of large-scale structure and astrophysics. In 2020, she was awarded an ERC Consolidator grant, which played a pivotal role in the realization of the eROSITA catalog and cosmology papers. Esra assembled a talented team of students and postdocs with the grant, with whom she enjoys collaborating and spending time outside of work. She received her Ph.D. in astrophysics at the NASA Marshall Space Flight Center and has worked as a postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics, NASA Goddard Space Flight Center, and MIT. Her work on the evolution of clusters over cosmic times has provided valuable insights into the growth of structures in general and the cosmological parameters governing the universe. Recently, the Cluster and Cosmology consortium published their results of the first eROSITA All Sky Survey, which delivered the most accurate cosmology constraints ever known.

Foto-Rechte: Dr. Esra Bulbul

M.Sc. Verena Johanna Brehm (Trondheim, Norway) - Kalenderwoche 6

Verena_Johanna_Brehm_Physikerin.png
Verena_Johanna_Brehm_Physikerin.png

Verena is a Ph.D. student in the Center for Quantum Spintronics, which is part of the Norwegian University of Science and Technology in Trondheim. After studying general physics in the Bachelor and Masters in Konstanz, Germany, she specialized in theoretical solid-state physics. Using large-scale numerical methods, she simulates the behavior of magnetic waves for magnonic devices and neuromorphic spintronics. By using the spin- instead of charge property of electrons as information carriers, novel magnetic devices promise to improve both computational speed and energy efficiency.

Foto-Rechte: M.Sc. Verena Johanna Brehm

Januar

Prof Dr. Francesca Calegari (Hamburg) - Kalenderwoche 5

Francesca_Calegari_Physikerin.jpg
Francesca_Calegari_Physikerin.jpg

Francesca leads the Attosecond Science group at the Center for Free-Electron Laser Science at DESY in Hamburg and is a full professor of physics at Hamburg University. She is also the head of the scientific board of PIER, the strategic partnership between DESY and Hamburg University, and one of the speakers of the Cluster of Excellence “Advanced Imaging of Matter.” Amongst other distinctions, she is an ERC StG laureate, received the ICO prize and the Ernst Abbe medal from the International Commission of Optics, and is an Optica Fellow.

The main focus of her research is to track and ideally control in real time the electron dynamics occurring in systems with increasing complexity, from simple molecules to molecules of biological interest and nanostructured materials. To this purpose, her group develops state-of-the-art table-top light sources providing extreme time resolution (from a few femtoseconds down to attoseconds) and spanning from the infrared to the ultraviolet and then further down in wavelengths to the soft-x ray spectral range. In her group, attosecond technology is used to understand the role of electron dynamics in the photo-induced chemical changes that occur in our own biomolecules (e.g., DNA and proteins) in a bottom-up approach. Her research aims to control molecules' chemical reactivity at the electron time scale (attochemistry) to achieve efficient light harvesting. Her approach is fully synergetic, with the possibility to resolve structural changes in molecules through femtosecond time-resolved X-ray diffraction using XUV/X-ray Free Electron Lasers (FELs).

Francesca is active in promoting diversity in science. She has been the Equal Opportunity director for the cluster of excellence AIM and is mentoring female scientists via the DynaMENT mentoring program in Hamburg. 

The picture shows Francesca in her Attosecond Science Lab.

Foto-Rechte: Prof Dr. Francesca Calegari

Dr. Felicitas Mokler (Heidelberg) - Kalenderwoche 4

Felicitas_Mokler_Physikerin.JPG
Felicitas_Mokler_Physikerin.JPG
Felicitas is an (Astro-)physicist, book author, and science journalist. After pursuing research on planet formation and brown dwarfs, she switched to science communication, first as a press officer at the Max-Planck-Institute for Gravitational Physics and later as an editor and science writer for several public science journals and mainstream media and has also founded the online magazine „Die Weltraumreporter“ („Cosmic Correspondents“) as part of Rifferporter eG, a cooperative of free-lance science writers. More recently, she has published several books, among others „Die Evolution des Universums“ („The Evolution of the Universe“) and, together with Robert Schwarz, „Unter den Polarlichtern der Antarktis“ („Under the Aurora of Antarctica“).

During the scientific year „Our Universe“ in 2023, she worked as science coordinator for the Roadshow „Universe on Tour“ on behalf of the Council of German Observatories (Rat Deutscher Sternwarten) at MPI for Radioastronomy.

Felicitas has been awarded the Klartext-Preis 2008 (award on public writing) for an essay about her thesis topic. In September 2023, she received the Hanno and Ruth Roelin Award for Science Journalism. Later, in 2024, she will take on the position of Journalist in Residence at HITS (Heidelberg Institute for Theoretical Physics).

The photo shows her during her presentation at the Göttinger Literaturherbst, where she presented her book „Die Evolution des Universums“ („The Evolution of the Universe“). 

Foto-Rechte: MPINAT

M.Sc. Alba Gómez-Segalàs (Vienna) - Kalenderwoche 3

Alba_Gomez_Segalas_Physikerin.jpg
Alba_Gomez_Segalas_Physikerin.jpg

Alba is a Ph.D. student in the research group of Dr. Francisco Balzarotti at the Research Institute of Molecular Pathology in Vienna, Austria. Her academic journey has taken her across borders, with a bachelor's degree in physics from "Universitat de Barcelona" (Barcelona, Spain) and a master's degree in optics and photonics from "Karlsruher Institut für Technologie" (Karlsruhe, Germany). She is captivated by fluorescence light microscopy and its application in the life sciences, and her research focuses on MINFLUX, a single-molecule localization approach that achieves isotropic nanometer localization precision and a temporal resolution down to the sub-millisecond range. She works on expanding the functionalities of a MINFLUX microscope to enable the simultaneous tracking of multiple fluorescent targets, a capability that holds great promise for unraveling intricate molecular dynamics like the conformational states of protein complexes. 

They recently posted a preprint showing their latest technological advancements that made possible the first demonstration of two-emitter MINFLUX tracking in 3D.

Foto-Rechte: M.Sc. Alba Gómez-Segalàs

Dr. Stefanie Todt (Dresden) - Kalenderwoche 2

Stefanie_Todt_Physikerin.JPG
Stefanie_Todt_Physikerin.JPG

Stefanie is a particle physicist at the Dresden University of Technology (TUD) and part of the ATLAS experiment at the LHC at CERN.

Her research focuses on scattering processes among electroweak gauge bosons. Including triple and quartic electroweak self-coupling interactions as well as the exchange of a Higgs boson, these scattering processes are an excellent tool for studying the delicate interplay of the gauge structure and the electroweak symmetry-breaking mechanism of the Standard Model (SM).

Her research projects examine the scattering of two same-charge W± bosons and contributed to the first observation of a process containing vector boson scattering with data from the ATLAS experiment at the LHC.

Furthermore, she studies the effects of an effective field theory (EFT) model describing beyond SM extensions that generate anomalous quartic gauge couplings in the electroweak sector.

For over 10 years, she has been active in outreach, mentoring, and supervision. As a mediator for particle physics, she participates in national and international masterclasses for high school students organized by the Netzwerk Teilchenwelt. She likes presenting and discussing her research field in public, at events such as Science in Pubs or the 35c3.

Standing for a supportive and appreciative scientific community, she has been the spokesperson for the German Ph.D. and young scientists representatives in the ATLAS experiment.

Foto-Rechte: Dr. Stefanie Todt

Dr. Christin David (Jena) - Kalenderwoche 1

Christin_David_Physikerin.jpg
Christin_David_Physikerin.jpg
Christin is a Junior Research Group Leader at Friedrich Schiller University Jena. She is fascinated by how matter interacts with light in nanostructures. The design of tailored nanostructures for optical technologies is at the heart of her research, with a focus on renewable energy applications. She is modeling new-generation photovoltaic and solar fuel cells to find technologies and pathways toward a sustainable future.

Foto-Rechte: Dr. Christin David

 

Hier geht es zu den Teilnehmerinnen der Physikerin der Woche 20182019202020212022 und 2023 Projekte.