Zusatzinformationen zu Physik konkret Ausgabe 18


Speicherung der elektrischen Energie

(von Konrad Kleinknecht)

Elektrischer Strom muss in dem Augenblick verwendet werden, in dem er erzeugt wird. Es gibt einen Bedarf, der rund um die Uhr benötigt wird (Grundlast), einen regelmäßig auftretenden zeitlich variablen Bedarf (Mittellast) und einen plötzlich nachgefragten Spitzenbedarf. Die Grundlast wird derzeit durch Braunkohle- und Kernkraftwerke abgedeckt, die Mittellast durch Steinkohlekraftwerke und die Spitzenlast durch schnell steuerbare Gaskraftwerke.

Neue fluktuierende Stromquellen

Durch die neuen Stromquellen Windkraft und Photovoltaik (PV) ändern sich die Verhältnisse. Abbildung 1 zeigt den zeitlichen Verlauf der Einspeisung von Solar- und Windstrom für die einzelnen Monate 2012. Die erbrachte Leistung fluktuiert sowohl täglich als auch saisonal. Windkraftwerke lieferten im Jahr 2012 ihre volle Nennleistung nur während durchschnittlich 4,6 Stunden am Tag und Photovoltaik-Solarzellen während 2,3 Stunden am Tag. Andererseits muss der Strom aus diesen Quellen wegen des EEG-Gesetzes prioritär abgenommen werden. Die konventionellen Kraftwerke müssen heruntergefahren werden, wenn die Sonne scheint oder der Wind bläst, und anschließend wieder hochgefahren werden. Das verringert ihre Effizienz und Rentabilität. Da die Erzeugung des Stroms aus Wind-und Solarenergie nicht mit dem zeitlichen Verlauf des Bedarfs übereinstimmt, wäre es sinnvoll, die überschüssige elektrische Energie wenigstens für die Dauer eines Tages zu speichern.
Die elektrische Energie aus Windkraft betrug im Jahr 2012 ca. 50.000 GWh1, die aus Photovoltaik ca. 24.000 GWh [1]. An einem Tag fallen also durchschnittlich 137 GWh Windenergie und 66 GWh Solarenergie an. Wenn diese Energie zum Zeitpunkt der Erzeugung nicht gebraucht werden kann, muss sie gespeichert werden, oder die Anlagen müssen abgeschaltet werden. Eine weitere Möglichkeit ist es, den Überschuss an die Nachbarländer zu verschenken oder dafür sogar eine Gebühr zu bezahlen.

Speicherung der elektrischen Energie aus Solar- und Windkraftanlagen

Elektrischer Strom kann mit hoher Effizienz zurzeit nur in Pumpspeicherkraftwerken gespeichert werden. Die Speicherkapazität aller Anlagen in Sachsen, Bayern und im Schwarzwald beträgt 40 GWh [2], reicht also nur aus, um ein Fünftel des Tagesertrags aus Wind und Sonne zu speichern. Dieses Szenario setzt voraus, dass die nötigen neuen Übertragungsleitungen von Nord nach Süd schon gebaut sind, um die Energie der Windkraftanlagen im Norden zu den Speichern im Süden zu bringen. Dies wird einige Jahre Bauzeit erfordern. Der Ausbau der Speicher im Süden hätte also höchste Priorität, stößt allerdings z. B. beim Ausbau des Schluchseekraftwerks bei Atdorf auf den Widerstand der Anwohner.

Als alternative zukünftige Speichermöglichkeit wird die Elektrolyse von Wasser und die Umwandlung des erzeugten Wasserstoffs zu Methan sowie dessen Verbrennung in einem Gaskraftwerk diskutiert. Diese Methode („power-to-gas-to-power“) erlaubt die Speicherung des Methangases im existierenden Rohrleitungssystem, ist allerdings sehr ineffizient; nur ein Drittel der eingesetzten Windkraftenergie steht am Ende als Elektrizität wieder zur Verfügung [3]. Die technische Umsetzung steckt noch in den Kinderschuhen, der Wirkungsgrad der Elektrolyse ist bei fluktuierendem Stromangebot geringer als bei konstantem Strom [4]. Das erzeugte Methan ist zur Zeit wesentlich teurer als das russische Erdgas oder das Flüssiggas aus Katar. Andere Alternativen wie etwa Druckluftspeicher haben nicht die benötigte Kapazität [3].

Eine Entlastung der Netze könnte erreicht werden, wenn alle Besitzer von PV-Anlagen auf ihrem Dach den um die Mittagszeit anfallenden Solarstrom in einigen Batterien im Haus speichern und am Abend zum Betrieb ihrer Hausgeräte benutzen würden. Wenn zwei Millionen Haushalte mit PV-Anlage jeweils Batterien mit 5 kWh Kapazität installieren, würde dies einen lokalen Speicher von 10 GWh bilden. Als weitere Möglichkeit wird die Speicherung in den Batterien zukünftiger Elektromobile diskutiert. Falls in zehn Jahren eine Million solcher Fahrzeuge existieren würde, könnte in ihren Batterien eine Energie von 20 GWh gespeichert werden. Das wären etwa zehn Prozent der an einem Tag anfallenden Wind-und Solarenergie, falls alle Elektromobile um die Mittagszeit aufgeladen würden. In Wirklichkeit werden sie nachts aufgeladen, wenn keine Sonne scheint. Für die nächsten zehn Jahre wird diese Speichermöglichkeit also keine Rolle spielen.

Fazit

Für die nächsten zehn Jahre wird es keine Möglichkeit geben, relevante Mengen elektrischer Energie effizient zu speichern. Es bleibt bei der fluktuierenden Einspeisung der Wind-und Solarenergie nur die Möglichkeit, fossile Kraftwerke als regelbare Schattenkraftwerke zu betreiben, die bei überschüssiger Energie aus Wind-oder Solarkraft heruntergefahren werden und bei deren Ausfall als Reserve zur Verfügung stehen. Diese unregelmäßige Betriebsweise der fossilen Kraftwerke ist allerdings ineffizient und unwirtschaftlich. Auch kann die Leistung dieser Kraftwerke nicht beliebig stark und schnell geändert werden.

Abbildung 1 (von Helmut Alt)

Quellen

[1]
Arbeitsgemeinschaft Energiebilanzen e.V.
[2]
H. Gasser, Arbeitskreis Energie der DPG Tagungsband 2012, S.128
[3]
M. Sterner, M. Jentsch, U. Holzhammer, Gutachten für Greenpeace, Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES Kassel), Feb. 2011
[4]
F. Schüth, MPI für Kohleforschung (Mülheim), FAZ, 13. März 2013, Seite N2
[5]
G. Borgolte 2013

Fußnoten

1
1 GWh (Gigawattstunde) = 1 Mio. kWh (Kilowattstunde); 1 TWh (Terawattstunde) = 1 Mrd. kWh; 1 kWh ist die Energiemenge, die bei einer Leistung von 1000 W innerhalb von einer Stunde umgesetzt wird.

FAQ

zurück zur normalen Ansicht