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1 - Graphene

Carlo Beenakker, Leiden University

[1] 2 point Explain why the conduction electrons in graphene are called “massless particles”.

Answer The conduction electrons in graphene are called ’massless’ by analogy with photons,
which have an energy-independent velocity and zero mass.

[2] 4 points Derive, for this case of uniform potential U0, the relation between the energy
E and the wave vector components kx, ky. Make a plot of E as a function of k ≡

√
k2
x + k2

y.

Figure 1: The correct
dispersion.
E = U0 ± ~vk

Answer The plane wave is an eigenfunction of momentum, so we may
replace px 7→ ~kx and py 7→ ~ky. We therefore seek a nonzero solution
of the matrix equation (H − E)Ψ = 0, where H is the 2× 2 matrix

H =

(
U0 ~vkx − i~vky

~vkx + i~vky U0

)
(1)

Such a solution only exists if the determinant of H −E is zero, which
evaluates to

Det(H−E) = (U0−E)2−~2v2(k2
x+k2

y) = 0 =⇒ E = U0±~vk (2)

[3] 4 points Verify this (y-independent) solution of the wave equa-
tion: {

Ψ1(x) = C exp
(
is
~v
∫ x

0 [E − U(x′)]dx′
)

Ψ2(x) = sΨ1(x)
(3)

with C an arbitrary constant and s equal to +1 or −1.

Answer For motion along the x-axis the wave function has no y-dependence, so the wave equa-
tion (1) can be written as {

U(x)Ψ1(x)− i~v d
dxΨ2(x) = EΨ1(x),

U(x)Ψ2(x)− i~v d
dxΨ1(x) = EΨ2(x).

(4)

The solution (2) can then be verified by substitution.

[4] 3 points Show that the reflection probability R = 0 at any energy no matter how high
the potential barrier.

Answer One way to show that there is no reflection, is to note that the probability density
|Ψ1(x)|2 + |Ψ2(x)|2 = 2|C|2 is independent of x. If R would be nonzero, the probability density
should be higher on one side of the barrier than on the other side.
Alternatively, one can note that far from the barrier, where U(x) tends to a constant < E, the
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solution Ψ2(x) = sΨ1(x) describes a wave moving in the positive x-direction (for s > 0) or in
the negative x-direction (for s < 0). Because the wave moves in the same direction at both sides
of the barrier there is no reflection.
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2 - Newton’s Cradle

Jan van Ruitenbeek, Leiden University

[1] 5 points For N = 2 and N = 3 describe the set of allowed solutions in N -dimensional
velocity space.

Answer Let v0 be the velocity of the launched ball before the collision, and vi the velocity of
ball i after the collision. Conservation of momentum gives (taking all masses equal): v1 + v2 +
. . .+ vN = v0

This equation describes a plane in N -dimensional space spanned by the points (v0, 0, . . . , 0),
(0, v0, . . . , 0), . . . , (0, 0, . . . , v0). Conservation of energy gives: v2

1 + v2
2 + . . .+ v2

n = v2
0

This equation describes a sphere in N -dimensional space, with radius v0. The solutions are found
at the intersections of the plane and the sphere. The solutions are constrained by the requirement
that the balls cannot pass through each other, or v1 < v2 < . . . < vn.

N = 1 has a single (trivial) solution.

N = 2 has two solutions, but the requirement v1 < v2 leaves only the solution v1 = 0, v2 = v0

N = 3 has infinitely many solutions. They lie on the circle intersecting the sphere with ra-
dius v0 and the plane spanned by the points (v0, 0, 0), (0, v0, 0), (0, 0, v0), but constrained by the
requirement v1 < v2 < v3.
This leaves all the points on the arc between the point (0, 0, v0) and the point (−1

3v0,
2
3v0,

2
3v0)

as valid solutions.

[2] 5 points When we perform the experiment for N = 3 we find that only one solution
is realised. Which solution is this, and explain why.

Answer In the experiment we observe that out of the infinitely many solutions only a single
solution is realized. For N = 3 this is the solution (0, 0, v0). The explanation must be that the
collision proceeds in steps of two-body collisions. The launched ball 1 collides with ball 2, which
is a N = 2 collision, and which has only a single solution. This ball, in turn, collides with ball 3,
which is again a N = 2 collision. This leaves the balls 1 and 2 behind at rest and launches ball
3 at velocity v0.
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3 - 2DEG at the AlGaAs-GaAs interface

Ingmar Swart, Utrecht University

[1] 10 points Show that the expectation value of the ground state energy using this ansatz is
given by:

Eg = 2.48

(
~2

2m∗

)1/3

F 2/3 (5)

with m∗ the effective mass.

Answer The expectation value for the energy is given by:

E(k) =

∫∞
0 ψ∗0(x)|Ĥ|ψ0(x)∫∞
0 ψ∗0(x)ψ0(x)dx

(6)

Using the ansatz wave function given in the exercise, ψ0(x) = xe−kx/2 and the expression for the
Hamiltonian

Ĥ =
~2

2m∗
∂2

∂x2
+ Fx (7)

one finds:

E(k) =

∫∞
0 xe−kx/2

[
~2

2m∗ (k−k2x/4)+Fx2
]
e−kx/2dx∫∞

0 x2e−kxdx

=

∫∞
0 e−kx

[
~2k
2m∗ x−

~2k2
8m∗ x

2+Fx3
]
dx∫∞

0 x2e−kxdx

=
~2k
2m∗

1
k2
− ~2k2

8m∗
2
k3

+ 6F
k4

2
k3

= ~2k2
8m∗ + 3F

k

(8)

An estimate of the ground state energy can be found using a variational approach:
set ∂E/∂k = 0. This gives:

k =

(
12m∗F

~2

)1/3

(9)

Insert this into the expression for the energy to obtain:

E0 =

(
~2

2m∗

)1/3

F 2/3 9

2 · 61/3
∼= 2.48

(
~2

2m∗

)1/3

F 2/3 (10)
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4 - Exercises on Particle Physics

André Mischke, Utrecht University

Charged particles in magnetic fields

[1] 2 points A proton beam with a kinetic energy of 200 GeV passes through a 2 m long dipole
magnet with a field strength of 2 T. Calculate the deflection angle Θ of the beam using the
relation 2 sin Θ

2 = L/R and the momentum p = 0.3 ·qBR, where L is the length, R the radius,
q the charge, and B the magnetic field.
The mass of the proton can be found in the table 1.
Note SI units!

Answer 2 sin θ
2 = L

R
p = 0.3qBR
(mp = 0.938GeV/c2, Ekin = 200GeV, B = 20kG = 2T) in SI system.
Rewriting this gives 1

R = 0.3qB
p .

This gives
p2 = E2 = (Ekin +m)2 = E2

kin + 2Ekinm (11)

Givin:
p = (E2

kin + 2Ekinm)
1
2 ≈ 200.936

GeV

c
(12)

Given that 2 sin Θ
2 = L/R we get

2 sin
Θ

2
=

0.3 · q ·B · L
2 · p

=
0.3 · 2 T · 2 m
2 · 200.936GeVc

(13)

So Θ = 0.38◦

[2] 2 points In a high energy reaction a proton with a kinetic energy of 10 MeV is bended
in a dipole magnet by 10◦ on a length L = 2 m. Calculate the necessary field using the rela-
tion from part [1].
Answer
Ekin = 10 MeV
Θ = 10◦

L = 2 m
So

2Sin(
Θ

2
) =

L

R
=

0.3 · q ·B · L
p

(14)

From what follows that

B =
2 sin Θ

2 · p
0.3 · L

(15)

Momentum is given by p = (E2
kin + 2 · Ekin ·m)

1
2 = 137.33 MeV

c
Giving:
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B =
2 sin 5◦ · 137.33 MeV

c

0.3 · 2 m
≈ 36 mT (16)

Particle identification

[3] 2 points Find an expression for the mass m is a function of the momentum p, the flight
length l and the flight time t. Given that the particles move on straight tracks.

Answer Given that β = v
c , γ = (1 − β2)−

1
2 ,p · c = β γ m c2, l = 30 m and c = 3 · 108m

s

m · c2 = p · c · 1

βγ
= p · c · (c

2 · t2

l2
− 1)

1
2 (17)

[4] 2 points The distance between the tracking detector and the ToF is l = 30 m. Identify the
following particles using the equation obtained in [3] and the masses given in table 1 .

Answer
particle 1 m · c2 = 0.937 GeV proton
particle 2 m · c2 = 0.488 GeV kaon
particle 3 m · c2 = 0.484 GeV kaon
particle 4 m · c2 = 0.141 GeV pion

Reconstruction of short-lived particles

[5] 2 points Use the method of invariant mass to determine the neutral particles.

Answer
m2
inv = E2

i − p2
i = E2

1 + 2E1E2 + E2
2 − p2

1 − 2p1p2 − p2
2 (18)

With E2
i − p2

i = m2
i i = 1, 2

m2
inv = m2

1 +m2
2 + 2E1E2 − 2p1 · p2 = 2|p1| · |p2| cosAngle(p1, P2) (19)

With Ei = (m2
i + p2

i )
1
2 i = 1, 2

For K → π+ + π− : m1 = m2 = mpion = 0.140MeV
c2

⇒ minv(π
+, π−) = 498MeV

c2

For Λ0 → p+ π− :
mproton = 0.938GeV

c2

mpion = 0.140GeV
c2

⇒ minv(p, π
−) = 1.078MeV

c2
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5 - Laser cooling

Dries van Oosten, Utrecht University

[1] 1 point In the case that the laser is resonant, and in the limit that s0 → ∞, what is the
rate by which the atom scatters photons?

Answer If s0 � 1, that means Pe = 1/2, the atoms will have a 50% change of being in the
excited state at any time. The scattering rate is thus half the rate of spontaneous emission.
Γsc = 1

2
γ
2π .

[2] 1 point In this case, what is the force exerted on the atom averages over many pho-
ton scattering events?

Answer When an atom absorbs a photon, due to momentum conservation, the momentum of the
atom must change by an amount equal to the photon momentum ~k, where k is the wavevector
of the laser light and |k| = k = ω/c. The force on the atom is simply this momentum times the
scattering rate. Thus F = Γsc~k = 1

2
γ
2π~k. As spontaneously emitted photons are emitted in a

random direction, the momentum transfer due to the emission events average out to zero over
many events.

[3] 1 point What is the force on the atom when s0 � 1 and δ = 0?

Answer When s0 � 1, the probability of finding the atom in the excited state is Pe = s0/2.
The scattering is then Γsc = 1

2s0
γ
2π and thus the force is F = Γsc~k = 1

2s0
γ
2π~k.

[4] 2 points Now derive the force in the case that δ 6= 0. Allow for the atom to have a velocity
v. Make a sketch of the force as a function of v for the case that δ < 0 and the case that δ > 0.

Answer When the detuning δ 6= 0 and the atom is moving with a velocity v, the atom effec-
tively sees the laser detuning by δ′ = δ + k · v. Then, the off-resonance saturation parameters
s = s0/(1 + 4(δ′/γ)2) and thus

F =
1

2

γ

2π

s0~k
1 + 4(δ + k · v)2/γ2

[5] 2 points Now assume there is an identical laser beam counter propagating with the origi-
nal laser beam. Derive the force. You may neglect the effects of interference between the two
beams.
Again, make a sketch of the force as a function of v for the case that δ < 0 and the case that
δ > 0.

Answer If the atom beam is counterpropagation with the first, it has a wavenumber opposite
to the first beam. As we are allowed to neglect the amount of interference, we can simply add the
forces due to the two beam. Thus

F =
1

2
s0
γ

2π
~k
(

1

1 + 4(δ + k · v)2/γ2
− 1

1 + 4(δ − k · v)2/γ2

)



12 SOLUTIONS

[6] 2 points Expand the expression you found in [5] for small v, such that you have a force
that is linear in v. What type of force is this?

Answer For small v, we can Taylor expand (δ + k · v)2 ≈ δ2 + 2δk · v. If we plug this into
the line shape we find

1

1 + 4(δ + k · v)2/γ2
≈ 1

1 + 4δ2/γ2
− γ2δk · v

(γ2 + 4δ2)2
,

which if we plug it into the equation for the force yields

F = −s0
γ

2π
~k

γ2δk · v
(γ2 + 4δ2)2

.

We call a force dependent on and opposite to the velocity is a friction force.

[7] 1 point Now, we plug in some numbers for Rubidium-87. The transition frequency for
Rubidium is ω = 2π · 384 THz and the linewidth γ = 2π · 6 MHz. Calculate the force on
the atom in the limit of exercise [2] and determine the resulting acceleration. Express the
acceleration in terms of the earths gravitional acceleration g.

Answer The result of [2] was F = 1
2γ~k. With ω = 2π · 384 THz we find a wavelength λ =

780 nm and thus a wavenumber k = 2π/λ ≈ 8 ·106 m−1. This gives a force of F ≈ 2.5 ·10−21 N.
We get the acceleration by dividing the force by the mass, which is 87 atomic mass units. This
yields a ≈ 1.7 · 105 m/s2, which is about 1800 times the earth acceleration.
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6 - No-cloning theorem

Lieven Vandersypen, Delft University of Technology

[1] 1 point What is the inner product of |ψ〉1 |ψ〉2 and |φ〉1 |φ〉2?

Answer
1〈φ|2〈φ||ψ〉1|ψ〉2 = 1〈φ|ψ〉1 · 2〈φ|ψ〉2 = 〈φ|ψ〉2

[2] 1 point What is the inner product of U(|ψ〉1 |s〉2) and U(|φ〉1 |s〉2)?

Answer
1〈φ|2〈s|U †U |ψ〉1|s〉2 = 1〈φ|2〈s||ψ〉1|s〉2 = 1〈φ|ψ〉1 · 2〈s|s〉2 = 〈φ|ψ〉

[3] 2 points What constraints does this impose on |ψ〉 and |φ〉?
Answer The constraint is that 〈φ|ψ〉2 = 〈φ|ψ〉. We know that x2 = x has two solutions, x = 0
and x = 1. Therefore either |ψ〉 = |φ〉, or |ψ〉 and |φ〉 are orthogonal.

[4] 2 points What are the implications for cloning unknown quantum states?

Answer It is possible to clone one specific state as well as states orthogonal to it, but impos-
sible to clone states that are not orthogonal to each other.

[5] 3 points We can also try to clone states using non-unitary processes, including measure-
ments. The first idea that comes to mind is to measure the state of the particle we want to
clone, and then to prepare multiple other particles in that same state. Considering spin-1/2
particles, either show that this works, or argue why it doesn’t work.

Answer If a spin-1/2 particle is either in | ↑〉 or in | ↓〉 and we measure its state along z,
the measurement returns ↑ respectively ↓. We can then proceed to prepare other particles in the
same state. However, if the spin-1/2 particle is in some arbitrary state a| ↑〉+b| ↓〉, measurement
still returns either ↑ or ↓. Then we have no way of knowing the value of a and b and thus cannot
prepare other particles in the state a| ↑〉+ b| ↓〉.

[6] 1 point Show that if quantum cloning were possible, it would be possible to commu-
nicate faster than light.

Answer Let’s say Alice wishes to transmit a single bit of information. To send a 0, she mea-
sures her particle along the z-axis, which will be project it to either ↑ or ↓. To send a 1, she
measures her particle along the x-axis, projecting it to either→ or←. In all cases, Bob’s particle
is projected to the opposite state of Alice’s particle. Bob then makes many copies of his state and
measures the particles along the z-axis. If all the measurements give the same outcome, he knows
Alice must have measured along z too, and that she sent him a 0. If his measurements give ↑ or
↓ with equal probability, he knows Alice must have measured along x and sent him a 1.
Note: there are variations on this scheme that work too. For instance, Alice can choose to mea-
sure along z or not to measure at all, to communicate a 0 or 1 respectively.
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7 - Connecting the dots

Henk Blöte, Leiden University

[1] 2 points Let there be a line connecting point 1 to point 2m. The remaining points are
divided into two groups by this line. On this basis, write down a recursion formula for cn for
general n.

Answer The remaining groups contain 2m − 2 and 2n − 2m points. Thus the recursion is

cn =
n∑

m=1

cm−1cn−m. (20)

[2] 2 points Use the definition of the so-called generating function

P (x) =

∞∑
k=0

ckx
k (21)

and the recursion found under part [1] to derive an equation that P (x) must satisfy. Solve
this equation, which yields P (x) as an explicit function of x.

Answer Substitution of this recursion in the definition of P(x) gives

P (x) = 1 + x
∞∑
k=1

k∑
m=1

cm−1x
m−1ck−mx

k−m (22)

The trick is now to interchange the two sums. This yields

P (x) = 1 + x
∞∑
m=1

∞∑
k=m

cm−1x
m−1ck−mx

k−m (23)

The index of the first and second sums can harmlessly be shifted by 1 and m respectively, which
yields

P (x) = 1 + x
∞∑
m=0

∞∑
k=m

cmx
mckx

k = 1 + xP (x)2 (24)

This is a quadratic equation in P , of which the solutions are

P± =
1

2x
±
√

1

4x2
− 1

x
. (25)

Expansion in x, and comparison with the known values of cn for small n shows that we have to
take the minus sign. Thus the desired solution is

P (x) =
1

2x
(1−

√
1− 4x) (26)
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[3] 2 points Using this solution, obtain the first few terms in the Taylor expansion of xP (x) =∑
k akx

k. Derive the ratio ak/ak−1 for general k. Write the similar ratio cn/cn−1 as a function
of n.

Answer

xP (x) = 1
2(1−

√
1− 4x) so that a0 = 0;

dxP (x)
dx =

√
1− 4x so that a1 = 1;

d2xP (x)
dx2

= 2(1− 4x)−3/2 so that a2 = 1;
d3xP (x)
dx3

= 12(1− 4x)−5/2 so that a3 = 2;
d4xP (x)
dx4

= 120(1− 4x)−7/2 so that a4 = 5;

The k-th derivative picks up an additional prefactor 2(2k − 3). Because of the factor 1/k! in the
Taylor expansion, we have ak/ak−1 = 2(2k − 3)/k and cn/cn−1 = 2(2n− 1)/(n+ 1).
[4] 2 points Give cn as an explicit function of n.

Answer Combination of the previous result with the known values of cn for small n yields the
final answer of the problem as cn = (2n)!

n!(n+1)!

[5] 2 points The corresponding contribution ∆S to the entropy of a system is ∆S = kBln(cn)
where kB is Boltzmann’s constant. How does ∆S, in leading order, depend on n in the limit
of large n?
Answer

∆S ' 2nkbln(2) (27)
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8 - Glaciers and climate change

Michiel Helsen, Utrecht University

[1] 2 points Find the length of the part of the glacier extending into the ocean, note that L is
the glacier length in x-direction (not along the bed).

Answer The part of the glacier extending into the ocean (∆L) is the part of the glacier between
the part where slope b reaches the sea level or b = 0 we call this point L0, and the maximum
length of the glacier, where calving takes place.
If b = 0 it follows that

0 = b0 − sL0 ⇒ L0 =
b0
s

(28)

The maximum length Lmax is reached when the glacier front reaches flotation, i.e. when the
buoyancy force from the water depth equals the local weight of the ice.

−ρwaterbLmax = ρiceH (29)

With bLmax = b0 − sLmax as the bed at maximum glacies extent, this leads to:

Lmax =
b0 + ρwater

ρice
H

s
(30)

From this follows

∆L = Lmax − L0 =
b0 + ρwater

ρice
H

s
− b0

s
=

ρwater

ρice
H

s
(31)

[2] 3 points Find the solution(s) for the equilibrium length of the glacier, as a function of E.

Answer The equilibrium solution for the glacier length is case of a calving glacier is obtained
when the integrated specific surface mass balance equals the calving rate. The specific surface
mass balance can be expressed as:
ḃ(h) = β (b0 − sx+H − E)
The calving rate is proportional to the water depth, which we write as: cbL, hence:∫ L

0 β (b0 − sx+H − E) dx = cbL
−1

2sβL
2 + [β (b0 +H − E) + cs]L− cb0 = 0

This quadratic equation can be solved using the ABC-formula:
A = −1

2sβ
B = β (b0 +H − E) + cs
C = −cb0
L = −B±

√
B2−4AC
2A

Note that this solution is only valid for L > b0/s (glaciers ending in sea), which is for E <
b0/2 +H. For a glacier terminating on land (E > b0/2 +H) the solutions become:
L = 2(b0+H−E)

s or L = 0.

[3] 1 point Ice flows under the influence of gravity.
Considering that the glacier geometry is in equilibrium, at which point do we find the highest
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ice velocity?

Answer When the glacier geometry is constant, the ice flow compensates any imbalance in spa-
tial differences in the mass balance. Therefore ice velocity is largest at the equilibrium line, as
the integrated mass balance (upstream of this point) is largest there.

[4] 3 points The mean temperature of the atmosphere decreases with height. Assume that
E coincides with an isotherm in the atmosphere. Find an expression for the sensitivity of
the glacier for a temperature change, i.e. dL

dT . The atmospheric temperature gradient is a
constant γ.

Answer dL
dT = dL

dE
dE
dT = − 2

γs

[5] 1 point How does this sensitivity changes when temperatures drop and the glacier front
reaches the ocean? Show this qualitatively in a sketch.

Answer The glacier sensitivity becomes smaller and eventually zero when the glacier tongue
reaches the ocean.

Figure 2: The correct sketch
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9 - 24 Hours in a Day – are there?

Gerhard Blab, Utrecht University

[1] 3 points Argue and sketch how the orbital motion of Earth around the sun leads to a mean
solar day that is longer than the rotation of the Earth, and show that this difference should
indeed be on the order of 4 minutes. Make sure to clearly indicate directions of rotation!

Figure 3: Rotation of the Earth around
the Sun. Sizes and distances not to scale
Source: Wikimedia, Gdr

Answer The direction of the Earth’s rotation and
its of motion around the sun are the same.
After one rotation (1 → 2) relative to the
fixed stars, Earth has moved also one day’s
worth of distance along its orbit and the sun
has thus not yet reach the local noon. As
the part of the orbit that Earth has moved
during the day is approximately 1/365 of a
circle, the additional rotation that is required
must be approximately 1/365 of one day, which
turns out to be just under 4 minutes as ex-
pected.

[2] 3 points Figure shows an “Analemma”, a fig-
ure obtained by plotting the position of the sun
every 24 hours over the course of a year. In it you
can find back the seasonal change of altitude, as
well as offset between our 24 hour “mean solar day” and the true solar time. Use the figure
to estimate the four times during a year at which a day is actually close to 24 hours long,
and plot the offset as a function of date (y axis: offset in minutes; x axis: months). This
representation is also called the “equation of time”.

Answer The dates should be at times where the tangent of the Analemma is vertical: mid-
February (11), mid-May (14), end of July (26) and end-October/early November (4). In order
to plot the equation of time, you need to identify 1 degree with (24h = 1440m)/360 = 4m.
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Figure 4: Equation of time, Source: Wiki-
media, Willy Leenders, English by Clem
Rutter

[3] 4 points The equation of time is caused by
two different effects, both comparable in mag-
nitude: the eccentricity of Earth’s orbit and
the obliquity (“tilt”) of its axis. Explain how
those two effects influence the length of a
true solar day during a year, and sketch their
independent contributions to the equation of
time.

Answer The effect of eccentricity follows directly
from Kepler’s law (# 2): a line segment between
Earth and sun sweeps out equal areas during equal
intervals. We are interested in how the angle
moved per day changes during the year. The an-
gle itself is proportional to 1/r ∼ (1 + ε cos θ)/c

(bonus points if you use Kepler’s equation), and the contribution to the equation of time is there-
fore sinosoidal with roots at the apsides in January and July.
The effect of the obliquity is due to the conservation of angular momentum – the direction of the
axis of Earth does not change (on the relevant time scales). This means that the “ecliptic” (the
plane in which Earth revolves around the sun, and on which the sun appears to move relative to
the fixed stars), will appear to change during the year as the sun moves from its lowest in winter
to its highest position in summer. This relative apparent motion was what generated the extra 4
minutes in the first question. The sun moves with constant speed along the ecliptic (remember:
we are now considering only obliquity, not eccentricity!), but it does so in different directions:
One, which in relative coordinates, is east-west (“right ascention”, the direction important for
measuring time) and one north-south (“declination”, you could also consider this higher or lower
in the sky). In conclusion, at the solsices (July and December) the effect of obliquity is maximal
– the sun apparently moves east-west, we have to wait longer for Earth’s rotation to compensate
– and it is minimal at the equinoxes (March and September) when the change in right ascention
is smallest. In the graph of the equation of time, we have thus four roots – two with a positive
slope at the solistices and two with a negative one at the equinoxes.

Figure 5: Contributions to the Equation of Time by eccentricity (blue, dash-dot) and obliquity
(purple, dash). Note that the figure is flipped relative to figure 4 - there are two ways to define
a difference!
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10 - Dzyaloshinskii-Moriya interactions and skyrmions

Rembert Duine, Utrecht University

[1] 2 points Give the configuration of m(x) with the lowest energy.

Answer Rewriting E(m) in cartesian coordiants using m(x) = (m1(x),m2(x),m3(x)) and
x = (x1, x2, x3)

E(m) =
J

2

∫
dx((∇m1)2 + (∇m2)2 + (∇m3)2) (32)

Obviously, is m = (c1, c2, c3) for fixed c1, c2, c3 ∈ R, E(m) = 0. For any non-constant m,E(m)
is positive since the integrand in the equation above is always positive. so m should be constant.

Another method uses Fourier transformation By writing m =
∑

kmke
ik−x we have ∇2m =∑

k−k2mke
ik−x Plugg in this into the equation above we get

E(m) = J
2

∫
dx
∑

k,k′(k
2mkmk′e

i(k+k′ · x)

= J
2

∑
k,k′ k

2mkmk′
∫
dxei(k+k′)·x

= V J
2

∑
k,k′ kmkmk′δk,k′

= V J
2

∑
k kmkmk′

(33)

with V the volume.
Because m is real m = m∗ =

∑
kmke

−ikx, we have mk∗ = −mk, so

E(m) =
V J

2

∑
k

k2|mk|2 (34)

For every value of k 6= 0, k2|m|2 > 0, so to minimize the energy we have mk = 0 for k 6= 0. So
m is constant.

[2] 2 points Derive the Euler-Lagrange equations for m(x) by minimizing this energy func-
tional, and show that you obtain

J∇2m(x) = D∇×m(x) (35)

Show that a possible solution of this equation is a so-called spin spiral:

m(x) = cos(qx)ŷ + sin(qx)ẑ (36)

and determine q.

Answer We have

m · (∇× m) = m1
∂m3

∂x2
−m1

∂m2

∂x3
+m2

∂m1

∂x3
−m2

∂m3

∂x1
+m3

∂m2

∂x1
−m3

∂m1

∂x2
(37)
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Now, we vary m slightly: m→ m+ δm
We find

δE = E(m+ δm)− E(m) =

∫
dx(−J∇2m+D∇×m) · δm (38)

so δE
δm = −J∇2m+D∇×m = 0 with D the Euler-Lagrange equation for m.

Rearranging gives
J∇2m = D∇×m (39)

One can also apply the formula for the Euler-Lagrange equation. By writing

E(m) =
∫
dxJ2 ((∇m1)2 + (∇m2)2 + (∇m3)2)

+D
2 (m1(∂m3

∂x2
− ∂m2

∂x3
) +m2(∂m1

∂x3
− ∂m3

∂x1
) +m3(∂m2

∂x1
− ∂m1

∂x2
)

(40)

we see that the Lagrangian density L is given by:

L(m) = J
2 ((∇m1)2 + (∇m2)2 + (∇m3)2)

+D
2 (m1(∂m3

∂x2
− ∂m2

∂x3
) +m2(∂m1

∂x3
− ∂m3

∂x1
) +m3(∂m2

∂x1
− ∂m1

∂x2
)

(41)

Now, we use ∂L
∂mi

=
∑3

j=1
∂
∂xj

∂L

∂(
∂mi
∂xj

)

∂L
∂mi

= D
2 (∇ ×m)i) and ∂

∂xj
∂L

∂(
∂mi
∂xj

)
= ∂

∂xj
(2J2

∂mi
∂xj
− D

2 mkεijk) with k = {1, 2, 3} and k 6= i, j

and εijk the Levicevita symbol.

3∑
j=1

∂

∂xj

∂L

∂ ∂mi
∂xj

= J∇2mi −
D

2
(∇×m)i (42)

so D
2 (∇×m)i = J∇2mi − D

2 (∇×m)i ⇒ D∇×m = J∇2m

To check ~m(~x) =

 0
cos qx
sin qx


We have: ∇2 ~m =

 0
−q2 cos qx
−q2 sin qx

 and

 ∂
∂x
∂
∂y
∂
∂z

×
 0

cos qx
sin qx

 =

 0
−q cos qx
−q sin qx

 (43)

So that Jq2 = Dq, q = D/J .
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[3] 3 points Show that this winding number is an integer.

Answer There are two solutions possible.
First solution:
~Ω1 ·

(
~Ω2 × ~Ω3

)
equals the volume enclosed by ~Ω1, ~Ω2 and ~Ω3

So

~Ω(x, y) ·
(
~Ω(x+ dx, y)× ~Ω(x, y + dy)

)
' dxdy~Ω(x, y) ·

(
∂~Ω

∂x
× ∂~Ω

∂y

)
(44)

equals the volume enclosed by ~Ω(x, y), ~Ω(x+ dx, y) and ~Ω(x, y + dy) Since ~Ω’s are unit vectors
and dxdy infinitesimal, this area is dxdy, which integrated over the unit sphere is 4π.

Second solution:

x(ρ, φ) = ρ cosφ
y(ρ, φ) = ρ sinφ
∂f
∂ρ = ∂f

∂x
∂x
∂ρ + ∂f

∂y
∂y
∂ρ = cosφ∂f∂x + sinφ∂f∂y

∂f
∂φ = ∂f

∂x
∂x
∂φ + ∂f

∂y
∂y
∂φ = −ρ sinφ∂f∂x + ρ cosφ∂f∂y

(45)

Rewriting this gives:

∂f
∂y = cosφ

ρ
∂f
∂φ + sinφ∂f∂ρ

∂f
∂x = cosφ∂f∂ρ −

sinφ
ρ

∂f
∂φ

(46)

Now write:

~Ω =

sin(θ(ρ, φ)) cos(ϕ(ρ, φ))
sin(θ(ρ, φ)) sin(ϕ(ρ, φ))

cos(θ(ρ, φ))

 (47)

After some straightforward but long algebra:

~Ω

(
∂~Ω

∂x
× ∂~Ω

∂y

)
=

sin(θ(ρ, φ))

ρ

[
∂ϕ

∂φ

∂θ

∂ρ
− ∂θ

∂ϕ

∂φ

∂ρ

]
(48)

and dx · dy = ρ · dρ · dφ. We get

W =
1

4π

∫ ∞
0

dρ

∫ 2π

0
dφ sin(θ(ρ, φ))

[
∂ϕ

∂φ

∂θ

∂ρ
− ∂θ

∂φ

∂ϕ

∂ρ

]
(49)

For skyrmion: take θ = θ(ρ). We can now work out the integral:∫ 2π

0
dφ
∂ϕ

∂φ
= 2π × integer (50)

∫ ∞
0

dρ sin θ
∂θ

∂ρ
= 2 (51)

Therefore, W must be an integer.
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[4] 3 points Derive the equation of motion for θ(ρ), starting from the energy that includes
a field in the z-direction, i.e., starting from

E[m] =

∫
dx
[
−J

2
m(x) · ∇2m(x) +

D

2
m(x) · (∇×m(x))−Bm(x) · ẑ

]
(52)

where B is the magnitude of the field in appropriate units.

Answer
We have:

~m(φ, z) = mθ(φ, z)ρ̂+mφ(φ, z)φ̂+mz(φ, z)ẑ (53)

so that
mθ = 0, mφ = sin(θ(ρ)) (54)

and
mz = cos(θ(ρ)) (55)

We have:

∇2
ψ =

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
(56)

and
∇× ~m = −∂mz

∂ρ
φ̂+ ẑ

1

ρ

∂

∂ρ
(ρmψ) (57)

Working this out gives:

E = 2π

∫
dρ ρ

(
J

2

[(
dθ

dρ

)2

+
sin2 θ

ρ2

]
+
D

2

[
dθ

dρ
+

sin θ cos θ

ρ

]
−B cos θ

)
(58)

Now plug in θ + ∂θ for θ and set the variation equal to zero:

J

(
d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

ρ2

)
+D

sin2 θ

ρ
= B sin θ (59)
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