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4 EXERCISES

Introduction

Dear contestants,

In front of you, you have the exercises of PLANCKS 2014. You are about to compete for being
the best physics student team of the world! I hope you will enjoy the competition.
Before you start working at the exercises, a few remarks must be made.

• Teams can consist of 3 or 4 (under-)graduate students

• The language used in the competition is English.

• The contest consists of 10 exercises, each is worth 10 points. Subdivisions of points
are indicated in the exercises.

• All exercises have to be handed in separately.

• When a problem is unclear, a participant can ask, through the crew, for a clarification
from the jury. The jury will respond to this request. If this response is relevant to all
teams, the jury will provide the other teams this information.

• You are allowed to use a dictionary: English to your native language.

• You are allowed to use a simple calculator (non-graphical and not scientific).

• The use of hardware (including phones, tablets etc.) is not approved, with exceptions
of simple watches and medical equipment.

• No books or other sources of information are to be consulted during the competition.

• The organisation has the right to disqualify teams for misbehaviour or breaking the
rules.

• In situations to which no rule applies, the organisation decides.

I wish you all the very best at the competition. May the best physics students team win
PLANCKS 2014!

Felix Nolet
PLANCKS organisation
Commissioner Jury & Exercises
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6 EXERCISES

1 - Graphene

Carlo Beenakker, Leiden University

Graphene is a mono-atomic layer of carbon atoms, arranged in a honeycomb lattice. Con-
duction electrons move in the (x, y)−plane of the layer, with velocity v = 106 m/s that is
independent of their energy E.

[1] 2 point Explain why the conduction electrons in graphene are called “massless particles”.

Because the honeycomb lattice has two atoms in the unit cell, the wave function of the
conduction electrons has two components Ψ1(x, y) and Ψ2(x, y). The two components satisfy
a pair of coupled quantum mechanical wave equations,{

U(x, y)Ψ1(x, y) + (vpx − ivpy)Ψ2(x, y) = EΨ1(x, y),
U(x, y)Ψ2(x, y) + (vpx + ivpy)Ψ1(x, y) = EΨ2(x, y).

(1)

The electrical potential energy is indicated by U(x, y) and px = −i~∂/∂x, py = −i~∂/∂y are
the two components of the momentum operator. For a uniform potential U(x, y) ≡ U0 the
solutions are proportional to the plane wave exp(ikxx+ ikyy).

[2] 4 points Derive, for this case of uniform potential U0, the relation between the energy
E and the wave vector components kx, ky. Make a plot of E as a function of k ≡

√
k2
x + k2

y.

The singularity at k = 0 is called “conical point” or “Dirac point”, and is a unique feature of
graphene.

Figure 1: Plot of potential U(x)

We introduce a potential barrier U(x) (see figure
1). An electron moves at energy E along the x-
axis towards the barrier and is reflected by it with
some probability R.

[3] 4 points Verify this (y-independent) solution
of the wave equation:{

Ψ1(x) = C exp
(
is
~v
∫ x

0 [E − U(x′)]dx′
)

Ψ2(x) = sΨ1(x)
(2)

with C an arbitrary constant and s equal to +1
or −1.

[4] 3 points Show that the reflection probability R = 0 at any energy no matter how high
the potential barrier.
This surprising result is known as the Klein paradox.
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2 - Newton’s Cradle

Jan van Ruitenbeek, Leiden University

Figure 2: Newton’s Cradle

Newton’s cradle is a well-known gadget and physics demonstration. It is usually described as
demonstrating the laws of conservation of energy and conservation of momentum.
For simplicity we take the motion to be one-dimensional and the collisions to be elastic.

[1] 5 points We launch a single ball onto the other balls that are at rest, and consider the
situation just after the collision. For any number N of balls (including the launched ball) in
the cradle how many solutions do the laws of conservation of energy and momentum permit?
For N = 2 and N = 3 describe the set of allowed solutions in N -dimensional velocity space.

[2] 5 points When we perform the experiment for N = 3 we find that only one solution
is realised. Which solution is this, and explain why.
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3 - 2DEG at the AlGaAs-GaAs interface

Ingmar Swart, Utrecht University

A 2-dimensional electron gas (2DEG) can exist at the interface between semiconductors. One
example where this naturally occurs is at the AlGaAs-GaAs interface. Due to the bending of
the energy bands, the potential energy landscape has the shape as shown by the dashed line in
figure 3. To first order, the area where the 2DEG forms, can be approximated by a triangular
shaped potential well: V (x < 0) = ∞ and V (x > 0) = Fx, where F is a proportionality
constant which has dimensions of force. It will be of the order of 10 meV

nm , or 1 pN . In this
case, the problem can be solved analytically.

V V = ∞ V = Fx

x
x = 0

Figure 3: Schematic illustration of the potential energy landscape of a AlGaAs-GaAs interface
(black dashed line). The area where the 2DEG is formed can be approximated by a triangular
barrier (gray solid line).

For the wavefunction, use the ansatz where k is the wave vector.{
ψk(x) = xe−kx/2 For x ≥ 0

ψk(x) = 0 For x < 0
(3)

[1] 10 points Show that the expectation value of the ground state energy using this ansatz is
given by:

Eg = 2.48

(
~2

2m∗

)1/3

F 2/3 (4)

with m∗ the effective mass.
You may find the following integral helpful.∫ ∞

0
xnekxdx = (−1)n

dn

dkn

∫ ∞
0

e−kxdx =
n!

kn+1
(5)
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4 - Exercises on Particle Physics

André Mischke, Utrecht University

Figure 4: Tracks of particles from a collision of lead atomic nuclei, reconstructed by the ALICE
experiment at the CERN Large Hadron Collider.

Charged particles in magnetic fields

[1] 2 points A proton beam with a kinetic energy of 200 GeV passes through a 2 m long dipole
magnet with a field strength of 2 T. Calculate the deflection angle Θ of the beam using the
relation 2 sin Θ

2 = L/R and the momentum p = 0.3 ·qBR, where L is the length, R the radius,
q the charge, and B the magnetic field.
The mass of the proton can be found in the table 1.
Note SI units!

[2] 2 points In a high energy reaction a proton with a kinetic energy of 10 MeV is bended
in a dipole magnet by 10◦ on a length L = 2 m. Calculate the necessary field using the
relation from part [1].
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Particle identification

In particle collisions hundreds of new particles are produced (see figure 4 ). Particle identifi-
cation (PID) is necessary to answer particular physics questions. In the following, pions (π),
kaons (K) and protons (p) are identified using a Time-of-Flight (ToF) detector. The momen-
tum p of the particles is measured by a tracking detector.

[3] 2 points Find an expression for the mass m is a function of the momentum p, the flight
length l and the flight time t. Given that the particles move on straight tracks.

[4] 2 points The distance between the tracking detector and the ToF is l = 30 m. Identify
the following particles using the equation obtained in [3] and the masses given in table 1 .

particle 1 p = 3.41 GeV/c t = 103.71 ns
particle 2 p = 3.72 GeV/c t = 100.86 ns
particle 3 p = 5.48 GeV/c t = 100.39 ns
particle 4 p = 8.77 GeV/c t = 100.013 ns

Reconstruction of short-lived particles

A liquid hydrogen target is bombarded with a |~p| = 12 GeV/c proton beam. The momentum
of the reaction products are measured in wire chambers inside a magnetic field.
In one event six charged particle tracks are seen. Two of them go back to the interaction
vertex. They belong to positively charged particles. The other tracks come from two pairs of
oppositely charged particles. Each of these pairs appears a few centimetres away from the
interaction point. Evidently two electrical neutral, and hence unobservable, particles were
created, which later both decayed into pairs of charged particles.
The measured momenta of the decay pairs were:
|~p+| = 0.68 GeV/c |~p−| = 0.27 GeV/c ](~p+, ~p−) = 11◦

|~p+| = 0.25 GeV/c |~p−| = 2.16 GeV/c ](~p+, ~p−) = 16◦

[5] 2 points Use the method of invariant mass to determine the neutral particles.
Hint: Possible decay candidates are Λ0 → p+π− and K0

s → π+ + π−. The mass of the proton
p and pion π± are given in table 1.



PLANCKS 2014 11

name Symbol Mass
(MeV/c2)

Spin
(~)

Charge
(e)

Antiparticle Mean life-
time (s)

Typical
decay
products*

Nucleon p (proton)
or N+

938.3 1/2 +1 p̄ > 1032 y

n (neutron)
or N0

938.6 1/2 0 n̄ 930 p+ e− + ν̄e

Lambda Λ0 1116 1/2 0 Λ̄0 2.5× 10−10 p+ π−

Sigma Σ+ 1189 1/2 +1 Σ̄− 0.8× 10−10 n+ π+

Σ0 1192 1/2 0 Σ̄0 10−20 Λ0 + γ
Σ− 1197 1/2 -1 Σ̄+ 1.7× 10−10 n+ π−

Xi† Ξ0 1315 1/2 0 Ξ̄0 3.0× 10−10 Λ0 + π0

Ξ− 1321 1/2 -1 Ξ̄+ 1.7× 10−10 Λ0 + π−

Omega Ω− 1672 3/2 -1 Ω+ 1.3× 10−10 Ξ0 + π−

Charmed
lambda

Λc
+ 2285 1/2 +1 Λ̄c̄ 1.8× 10−13 p+K−+Λ+

Pion π+ 139.6 0 +1 π− 2.6× 10−8 µ+ + νµ
π0 135 0 0 self 0.8× 10−16 γ + γ
π− 139 0 -1 π+ 2.6× 10−8 µ− + ν̄µ

Kaon K+ 493.7 0 +1 K− 1.24× 10−8 π+ + π0

K0 497.7 0 0 K̄0 0.88×10−10 π+ + π−

and
5.2× 10−8‡ π+ +e−+ ν̄e

Eta η0 549 0 0 self 2× 10−19 γ + γ

Table 1:
* Other decay modes also occur for most particles.
†The Ξ particle is somethimes called the cascade.
‡The K0 has two distinct lifetimes, sometimes referred to as K0

short and K0
long. All other

particles have a unique lifetime.
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5 - Laser cooling

Dries van Oosten, Utrecht University

An important technique in modern experimental physics is laser cooling and trapping. In this
exercise, we will look at how laser cooling works.

We treat the atom as a two level system, with a groundstate |g〉 and an excited state |e〉. We
write the energy difference between the ground- and excited state as Ee − Eg = ~ωeg with
ωeg the transition frequency. We take the lifetime of the excited state to be 1/γ. The laser
beam has an intensity I and a frequency ω. We define the detuning of the laser with respect
to the atomic transition frequency as δ = ωeg − ω. The intensity is often written in term of
the saturation parameter s0 and the saturation intensity Is, which is a property of the atom,
as I = s0Is. Using this notation, the propability of the atom being in the excited state with
the laser on-resonance (i.e. δ = 0) can be written as

Pe =
1

2

s0

1 + s0
(6)

In the case that the laser is off-resonance, we replace s0 by s = s0/(1 + 4(δ/γ)2).

[1] 1 point In the case that the laser is resonant, and in the limit that s0 → ∞, what is
the rate by which the atom scatters photons?

[2] 1 point In this case, what is the force exerted on the atom averages over many pho-
ton scattering events?

[3] 1 point What is the force on the atom when s0 � 1 and δ = 0?

[4] 2 points Now derive the force in the case that δ 6= 0. Allow for the atom to have a velocity
v. Make a sketch of the force as a function of v for the case that δ < 0 and the case that δ > 0.

[5] 2 points Now assume there is an identical laser beam counter propagating with the origi-
nal laser beam. Derive the force. You may neglect the effects of interference between the two
beams.
Again, make a sketch of the force as a function of v for the case that δ < 0 and the case that
δ > 0.

[6] 2 points Expand the expression you found in [5] for small v, such that you have a force
that is linear in v. What type of force is this?

[7] 1 point Now, we plug in some numbers for Rubidium-87. The transition frequency for
Rubidium is ω = 2π · 384 THz and the linewidth γ = 2π · 6 MHz. Calculate the force on
the atom in the limit of exercise [2] and determine the resulting acceleration. Express the
acceleration in terms of the earths gravitional acceleration g.
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6 - No-cloning theorem

Lieven Vandersypen, Delft University of Technology

It is possible to clone sheep, but can you clone an unknown quantum state?

Imagine a friend gives you a particle in the state |ψ〉 without telling what state she is giv-
ing you. You want to make a faithful copy of this state, i.e. you want to have another particle
with the exact same state. The other particle is initially in a state |s〉 that is independent of
|ψ〉.

First assume that you have a quantum copy machine described by a unitary time evolution
U , which acts in the following way on the two particles:

U(|ψ〉1 |s〉2) = |ψ〉1 |ψ〉2 (7)

where the subscripts refer to particle 1 and 2 respectively. Similarly, if your friend gave you
the state |φ〉, the action of the copy machine would be

U(|φ〉1 |s〉2) = |φ〉1 |φ〉2 (8)

Note: you can answer questions 5 and 6 without knowing the answer to questions 1-4.

[1] 1 point What is the inner product of |ψ〉1 |ψ〉2 and |φ〉1 |φ〉2?

[2] 1 point What is the inner product of U(|ψ〉1 |s〉2) and U(|φ〉1 |s〉2)?

From the equalities above, it is clear that the inner products of questions 1 and 2 must be the
same.

[3] 2 points What constraints does this impose on |ψ〉 and |φ〉?

[4] 2 points What are the implications for cloning unknown quantum states?

[5] 3 points We can also try to clone states using non-unitary processes, including measure-
ments. The first idea that comes to mind is to measure the state of the particle we want to
clone, and then to prepare multiple other particles in that same state. Considering spin-1/2
particles, either show that this works, or argue why it doesn’t work.

[6] 1 point Show that if quantum cloning were possible, it would be possible to communicate
faster than light.

Hint: consider a so-called Bell pair, with two spin-1/2 particles in the state (|↑〉 |↓〉−|↓〉 |↑〉)/
√

2.
Alice (on earth) possesses one of the particles, and Bob (on a planet light years away) the
other.
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7 - Connecting the dots

Henk Blöte, Leiden University

Some two-dimensional problems in statistical physics, such as a system of polymers, and the
Ising, XY and Heisenberg models, can be formulated in terms of a sum on all configurations
of non-intersecting loops in a plane. In the study of these loop models, the following problem
occurs.

1

2

3

4

2n-1

2n

Figure 5: An example of non-intersecting loops in a plane.

Consider a circle, with 2n points on its circumference. These points are connected by n non-
intersecting lines within the circle. Each point is connected to precisely one other point. See
an example in the figure 5 .

The problem is now to derive the number of ways these 2n points can be pairwise con-
nected. Obviously, for n = 1 we have 2 points, which can only be connected to one another,
so c1 = 1. For n = 2 one has 4 points, and c2 = 2. Namely, point 1 can be connected to
point 2 or to point 4. Connection of point 1 to point 3 is not allowed, because it intersects the
line between points 2 and 4. The points are numbered clockwise. We use the notation c0 = 1.

[1] 2 points Let there be a line connecting point 1 to point 2m. The remaining points are
divided into two groups by this line. On this basis, write down a recursion formula for cn for
general n.

[2] 2 points Use the definition of the so-called generating function

P (x) =

∞∑
k=0

ckx
k (9)

and the recursion found under part [1] to derive an equation that P (x) must satisfy. Solve
this equation, which yields P (x) as an explicit function of x.
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[3] 2 points Using this solution, obtain the first few terms in the Taylor expansion of xP (x) =∑
k akx

k. Derive the ratio ak/ak−1 for general k. Write the similar ratio cn/cn−1 as a function
of n.

[4] 2 points Give cn as an explicit function of n.

[5] 2 points The corresponding contribution ∆S to the entropy of a system is ∆S = kBln(cn)
where kB is Boltzmann’s constant. How does ∆S, in leading order, depend on n in the limit
of large n?
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8 - Glaciers and climate change

Michiel Helsen, Utrecht University

As a consequence of climate fluctuations, glaciers vary in length. We can study the sensitivity
of glaciers to climate change with a simple model.

Figure 6: A sketch of a glacier with constant slope

Figure 6 considers a glacier with length L, constant thickness H and flowing on a bed b(x)
with a small constant slope s: b = b0 − sx with x = 0 the top of the glacier. The height of the
bed h is expressed with respect to sea level.
We assume that the glacier has a constant width. Water and ice density are denoted by ρwater
and ρice, respectively.
When the glacier reaches the ocean, calving occurs as the ice reaches flotation, i.e. there is
no floating ice tongue.

[1] 2 points Find the length of the part of the glacier extending into the ocean, note that
L is the glacier length in x-direction (not along the bed).

Besides floatation the calving rate at the glacier front is proportional to the water depth,
which we write as: c bL. Apart from ice loss at the calving front, the glacier gains or loses
mass at its surface, which is called the Specific Mass Balance SMB.
It is defined as the mass of ice that accumulates or is removed per year at a specific point on
the glacier surface. As such, it is the resultant of many meteorological processes that deter-
mine the exchange of mass between atmosphere and glacier surface (snowfall, rime, melt,
sublimation, etc).
We assume that the specific balance varies as: SMB(h) = β(h − E), where h is the height
above sea level, β is the balance gradient (a constant) and E is the equilibrium line altitude,
which separates the accumulation area from the ablation area.

[2] 3 points Find the solution(s) for the equilibrium length of the glacier, as a function of
E.

[3] 1 point Ice flows under the influence of gravity.
Considering that the glacier geometry is in equilibrium, at which point do we find the highest
ice velocity?
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Assume for part [4] the simple case that the glacier terminus does not reach the ocean.

[4] 3 points The mean temperature of the atmosphere decreases with height. Assume that
E coincides with an isotherm in the atmosphere. Find an expression for the sensitivity of
the glacier for a temperature change, i.e. dL

dT . The atmospheric temperature gradient is a
constant γ.

[5] 1 point How does this sensitivity changes when temperatures drop and the glacier front
reaches the ocean? Show this qualitatively in a sketch.
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9 - 24 Hours in a Day – are there?

Gerhard Blab, Utrecht University

We all know that there are 24 hours in a day. If we look more closely, it turns out, this is
not quite correct: a true solar day in late December is up to half a minute longer than the
expected 24 hours, while in mid-September we are all shortchanged 20 seconds! Only aver-
aged over a year, a “mean” solar day measures the regulation 24 hours.

Figure 7: Position of the sun at 12:00 noon GMT as seen at the Royal Observatory, Greenwich,
UK (lat 51.5◦ N, long 0◦ W); Earth’s last perihelion (147 Gm) occurred on January 4th, 2014,
and its next aphelion (152 Gm) will be on July 4th.

To tackle this problem, I need to tell you what I mean by a “true” solar day: it is the time
between two local noons, that is times at which your shadow will point exactly north (or
south, if you are in Australia).

[1] 3 points Argue and sketch how the orbital motion of Earth around the sun leads to a
mean solar day that is longer than the rotation of the Earth, and show that this difference
should indeed be on the order of 4 minutes. Make sure to clearly indicate directions of rota-
tion!

[2] 3 points Figure 7 shows an “Analemma”, a figure obtained by plotting the position of
the sun every 24 hours over the course of a year. In it you can find back the seasonal change
of altitude, as well as offset between our 24 hour “mean solar day” and the true solar time.
Use the figure to estimate the four times during a year at which a day is actually close to
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24 hours long, and plot the offset as a function of date (y axis: offset in minutes; x axis:
months). This representation is also called the “equation of time”.

[3] 4 points The equation of time is caused by two different effects, both comparable in
magnitude: the eccentricity of Earth’s orbit and the obliquity (“tilt”) of its axis. Explain how
those two effects influence the length of a true solar day during a year, and sketch their inde-
pendent contributions to the equation of time.

Figure 8: Axis Tilt (Obliquity) of Earth
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10 - Dzyaloshinskii-Moriya interactions and skyrmions

Rembert Duine, Utrecht University

Figure 9: Example of a magnetic skyrmion. The magnetization points up at the skyrmion
core and down away from the core.

A ferromagnetic material far below its critical temperature is characterized by a direction
of magnetization m(x) (a unit vector) that can, in general, be a function of the three-
dimensional position x. For ordinary ferromagnets, the energy is given by

E[ m] =

∫
dx
[
−J

2
m(x) · ∇2m(x)

]
(10)

where J > 0 is the so-called spin stiffness.

[1] 2 points Give the configuration of m(x) with the lowest energy.

In certain ferromagnets (to be more precise, in ferromagnets without inversion symmetry)
there are additional terms in the energy, called Dzyaloshinskii-Moriya interactions. One pos-
sibility is a term of the form m · ∇ ×m, so that the energy now reads

E[m] =

∫
dx
[
−J

2
m(x) · ∇2m(x) +

D

2
m(x) · (∇×m(x))

]
(11)

with D > 0 a constant.
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[2] 2 points Derive the Euler-Lagrange equations for m(x) by minimizing this energy func-
tional, and show that you obtain

J∇2m(x) = D∇×m(x) (12)

Show that a possible solution of this equation is a so-called spin spiral:

m(x) = cos(qx)ŷ + sin(qx)ẑ (13)

and determine q.

Other examples of low-energy configurations are so-called skyrmions (see figure 9 ) for which
the magnetization depends only on the coordinates in the x− y−plane, i.e., m(x) = m(x, y).
Skyrmions correspond to excitations where the magnetization is up (or down) at a certain
position (the position of the skyrmion), whereas it is down (or up) away from this position.
For skyrmions the so-called winding number W is equal to +1 (or -1 for anti-skyrmions).
This winding number is defined by

W =

∫
dxdy

(4π)
m ·

(
∂m
∂x

)
×
(
∂m
∂y

)
(14)

[3] 3 points Show that this winding number is an integer.
(This means that smooth evolutions of the magnetization cannot lead to changes in the wind-
ing number, so that skyrmions are what is called “topologically protected”).

Hint: one aproach is to parameterize the unit vector m in terms of angles θ(ρ, φ) and ϕ(ρ, φ)
according to m = (sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)). These angles depend polar coordi-
nates (ρ, φ) in the plane. Rewrite the winding number in terms of ρ and φ. Evaluate this for
skyrmions for which ρ depends on φ only.

A possible ansatz for the description of a skyrmion is to assume

m = sin θ(ρ)φ̂+ cos θ(ρ)ẑ (15)

where (ρ, φ, z) are cylindrical coordinates.

Continued on next page
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[4] 3 points Derive the equation of motion for θ(ρ), starting from the energy that includes a
field in the z-direction, i.e., starting from

E[m] =

∫
dx
[
−J

2
m(x) · ∇2m(x) +

D

2
m(x) · (∇×m(x))−Bm(x) · ẑ

]
(16)

where B is the magnitude of the field in appropriate units.

You might find the cylindrical Laplacian usefull

∇2 =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
(17)
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