
Controlling laboratory 
equipment with Python

Alexey Shkarin

Max Planck Institute for the Science of Light, Erlangen



Outline

• Python overview

• Basics of device communication
• Message-based communication

• Library-based communication

• Pylablib introduction

• (Live) demo

Alexey Shkarin, DPG Spring Meeting 2022



Basic Python facts

• Created in early 90’s, 1.0 in 1994, 2.0 in 2000, 3.0 in 2008

• Scripting language, but a lot of standard library code is written in C, so 
the performance is usually not an issue

• Fairly minimalistic: full language specification is ~100 pages (C is 700, C++ 
is 1300)

• Open-source and completely free, including implementations and 
libraries

• “Batteries included”: standard library already has a lot of what you might 
want; the rest is available as packages, which are installed with a single 
command

• Popular in many scientific fields, e.g., de-facto standard in ML community

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: official Python logo



Basic packages

• Scientific data analysis:
• Numpy: data arrays, efficient element-wise operations, basic math and linear algebra, FFT, random 

number generation

• Pandas: heterogeneous data tables, CSV files

• Scipy: advanced data analysis, optimization, interpolation, basic image processing, special functions

• Scikit-learn: collection of machine learning algorithms

• Scikit-image: collection of image processing and analysis algorithms

• OpenCV: there’s a Python wrapper for it, which is regularly updated

• Numba: JIT-compilation of high-performance code (including strong optimization, parallelization, 
and GPU compilation)

• Cython: C-compiler which takes Python-compatible syntax

• Matplotlib/seaborn: publication-quality plotting

• GUI: PyQt/PySide (Qt wrapper), wxPython (wxWidgets wrapper), pyqtgraph (fast plotting)

• Web tools: Django, Dash, Flask

• Basic language stuff: testing (pytest, nose), linting (pylint, pep8, flake8), IDEs (Spyder, 
PyCharm, Jupyter), documentation (Sphinx)

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: official Python packages logos



• Two basic approaches to device control (from programmer’s 
perspective):
• Sending and receiving messages via some predefined protocol.

Language-independent, as long as the physical protocol (serial port, 
USB, TCP/IP) is supported by the language.

• Using manufacturer-supplied libraries (usually .dll for Windows or .so for 
Linux), which contain precompiled code to directly communicate with custom 
device drivers.
C is de-facto standard there, but sometimes wrappers for other languages 
(LabView, C#, Python) could be provided by the manufacturer or developed by 
the community.

• Sometimes both are combined: libraries provide methods for sending 
and receiving messages, which do most of the work

Device communication

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: https://www.flaticon.com/

https://www.flaticon.com/


Message-based devices

• Typically used for simple devices, where throughput and latency 
are less of an issue, and complicated synchronization is not 
required
• Most HP/Agilent/Keysight electronics (for historical reasons) and 

corresponding device types (oscilloscopes, AWGs/MWGs, VNAs, MW 
spectrum analyzers). Examples: Keysight, Tektronix, Rigol.

• Most simple sensors: pressure gauges, temperature sensors, level 
meters, power meters. Examples: Lakeshore, Pfeiffer, Leybold, MKS.

• Many actuators and motion controllers. Examples: Thorlabs, Newport, 
Attocube, Trinamic.

• Simple single-purpose devices (lasers, simple motorized components, 
microcontrollers). Examples: Toptica, M Squared, OZOptics, Arduino.

Alexey Shkarin, DPG Spring Meeting 2022



Message interfaces (how to send)

• Serial port (aka RS-232, COM-port, tty, UART)
• Very simple, very slow (<2 kByte/s for many devices, <13kByte/s for almost all)
• Require specifying some parameters (most notably, baud rate), which can be found 

in device manuals
• Physically often implemented as a USB connection with a USB<->Serial chip inside
• Caveat (at least on Windows): COM-ports are system-wide resources, so only one 

process can be connected to the device at a given time

• TCP/IP (usually via Ethernet)
• Faster, simple to program, in theory much more extendable
• Usually only need to know address and port
• Protocol can handle many connections to the same device; the extent to which 

devices comply varies

• USB
• Fairly complex and universal protocol, so you usually rely on manufacturer’s drivers
• VISA is a common message interface for USB devices

Alexey Shkarin, DPG Spring Meeting 2022



Message protocols (what to send)

• Text protocols
• Vary widely, many companies and devices will have their own

• Somewhat common standard is SCPI (created by HP)

• Usually pretty easy to use (in harder cases might use regular expressions to 
parse replies)

• Binary protocols
• Vary even more, everyone comes up with their own

• Somewhat harder to work with and debug problems

• Sometimes can see a combination (e.g., SCPI): commands in text, 
large data in binary

Alexey Shkarin, DPG Spring Meeting 2022



Text message protocols

Typically consist of a command/query name, a list of arguments, and a terminator

Some important parameters to consider:

• Termination character for sending or receiving (<CR>, <LF>, or both)

• Command format: number representation, parameter separators, case sensitivity

• Reply format: separators, error messages, echo

• Large data transfer: list of numbers, binary representation, base64

In some cases different approaches might be used (e.g., JSON)

Tektronix TDS2000 Picomotor 8742 Attocube ANC300

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: documentation for the corresponding devices



Binary message protocols

Typically have fixed length and rigid byte-level structure

Some important parameters to consider:

• Arguments size and format, endianness

• Variable message length format (usually length is declared)

Thorlabs APT

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: documentation for the corresponding devices



Related Python libraries

Accessing interfaces
• pySerial (https://pyserial.readthedocs.io/) for serial interface devices

• PyVISA (https://pyvisa.readthedocs.io/) for VISA devices; also includes some 
support for other interfaces

• socket (built-in) for TCP/IP communications

• pyft232 (https://pypi.org/project/pyft232/) for some particular serial devices

• pyusb (https://pyusb.github.io/pyusb/) for non-VISA USB devices

Dealing with protocols
• re (built-in) is sometimes useful to parse text messages

• struct (built-in) for generating and parsing fixed-format binary data

• Numpy (https://numpy.org/) to parse large binary arrays

Alexey Shkarin, DPG Spring Meeting 2022

https://pyserial.readthedocs.io/
https://pyvisa.readthedocs.io/
https://pypi.org/project/pyft232/
https://pyusb.github.io/pyusb/
https://numpy.org/


• Typical for more complicated devices: complicated memory 
management, low latency, high throughput
• Cameras and frame grabbers. Examples: Andor, PCO, IDS, 

Hamamatsu, SiliconSoftware, Teledyne Photometrics.

• DAQs. Examples: National Instruments.

• Sometimes used to provide high-level device-independent 
interfaces. Examples: Thorlabs Kinetix, SmarAct.

• In some cases, required for hardware with specific drivers which 
are not supported by standard libraries (serial, VISA). Examples: 
Arcus Technology, HighFinesse.

Library-based devices

Alexey Shkarin, DPG Spring Meeting 2022



Related Python libraries

• The main workhorse is the built-in ctypes library
• Allows calling the functions contained within the library (.dll or .so)

• Provides all necessary C-related functionality: creating variables of a specific 
type, handling structures, memory allocation, data pointers, function pointers 
(callbacks)

• In all but the simplest cases, basic knowledge of C (working with memory, 
pointers, structures) is highly recommended

• Unfortunately, does not parse C header files, so all of the definitions 
(functions, types, structures) need to be done in Python

niimaq.h

Alexey Shkarin, DPG Spring Meeting 2022 Image sources: corresponding NIIMAQ header file



Pylablib

• The main goal is to encapsulate different device communication methods in a simple object-based package

• Aims to provide predictable interfaces which are consistent across different devices of the same kind

• Supports about 50 different device interfaces from more than 30 different manufacturers

Alexey Shkarin, DPG Spring Meeting 2022



Currently supported devices

Cameras
Andor (iXon, Luca, and Zyla), Hamamatsu (Orca Flash and ImagEM), NI IMAQdx camera interface (PhotonFocus HD1-D1312), PCO (pco.edge), Thorlabs
Scientific Cameras (Kiralux), Thorlabs uc480 (Thorlabs DCC1545M), IDS uEye (IDS SC2592R12M), Princeton Instruments (PIXIS 400), Photometric
(Prime 95B and KINETIX), PhotonFocus frame grabber cameras (MV-D1024E with NI and SiSo frame grabbers), NI IMAQ frame grabbers (NI PCI-1430 
and PCI-1433), Silicon Software frame grabbers (microEnable IV AD4-CL)

Stages and motors
Attocube (ANC300 and ANC350), Thorlabs APT/Kinesis (KDC101, K10CR1, BSC201, KIM101), Newport Picomotor (8742), Arcus Performax (PMX-4EX, 
PMX-2EX, DMX-J-SA), Trinamic (TMCM-1110), SmarAct (open-loop SCU-controller)

Sensors
HighFinesse (WS6 and WS7 wavemeters), Lakeshore (Lakeshore 218 temperature controller), Cryocon (CryoCon 14C temperature sensor), Pfeiffer
(TPG261 and DPG202), Leybold (ITR90), Kurt J. Lesker (KJL300), Ophir (Vega power meter), Thorlabs (TPA101 quadrature detector)

Lasers
Toptica (iBeam Smart), Lighthouse Photonics (SproutG), Laser Quantum (Finesse), M2 (Solstis)

Electronics
Tektronix oscilloscopes (TDS2002B, TDS2004B, and DPO2004B), Agilent-style AWGs (Agilent 33500 and 33220A, Rigol DG1022, Tektronix AFG1022, 
GW Instek AFG2225 and AFG2115), NI DAQmx (NI USB-6008, NI USB-6343, and NI PCIe-6323)

Misc
Thorlabs (MFF flip mirror, FW filter wheel, MDT693 voltage source), OZOptics (EPC04, DD100, TF100), Arduino (basic communication wrapper)

The list is available at https://pylablib.readthedocs.io/
Alexey Shkarin, DPG Spring Meeting 2022

https://pylablib.readthedocs.io/


Standalone camera control software

• Includes all pylablib-supported 
cameras

• High performance
• Customizable on-line 

processing in Python
• Flexible data acquisition



Conclusions and further links

Images and text source: Python package logos, device manuals, https://www.flaticon.com/

Packages
• pySerial (https://pyserial.readthedocs.io/)
• PyVISA (https://pyvisa.readthedocs.io/)
• pyft232 (https://pypi.org/project/pyft232/)
• pyusb (https://pyusb.github.io/pyusb/)
• socket, re, struct, ctypes (built-in)

Specific devices
• Usually manuals (or “Programming manual”) are a good place to start for message-based devices
• For library-based devices APIs are usually freely available, either separately, or as a part of standard 

communication software

Pylablib
• Documentation: https://pylablib.readthedocs.io/
• Repository: https://github.com/AlexShkarin/pyLabLib
• Cam-control: https://pylablib-cam-control.readthedocs.io/

https://www.flaticon.com/
https://pyserial.readthedocs.io/
https://pyvisa.readthedocs.io/
https://pypi.org/project/pyft232/
https://pyusb.github.io/pyusb/
https://pylablib.readthedocs.io/
https://github.com/AlexShkarin/pyLabLib
https://pylablib-cam-control.readthedocs.io/

