Pragmatic semantic data management with CaosDB

Alexander Schlemmer, Ulrich Parlitz, Stefan Luther

Max Planck Institute for Dynamics and Self-Organization

2022-03-16

www.bmp.ds.mpg.de E E

@ Caosdb =

an open scientific database

CaosDB Overview

Data Models

CQL and Python API

o Crawler

What is CaosDB?

@ Semantic Research Data Management System (RDMS) Fitschen
et.al., Data 2019, 10.3390/data4020083

@ Developed at the Max Planck Institute for Dynamics and
Self-Organization (Gottingen) since 2010

@ Open Source project since 2018: gitlab.com/caosdb
o Commercial support available by IndiScale GmbH® (since 2019)

@ Currently approximately 15 instances in very different scientific
disciplines

1A.S. is a co-founder of IndiScale.

https://doi.org/10.3390/data4020083
https://gitlab.com/caosdb

CaosDB

Data Acquisition Data Analysis

(T T T T T T T T T T T T N
i e.g. Electronic Lab ! .
! Notebook (ELN) | B [FileSystem]

© BarkieyModel

Crawler © holeRadive "

© Software

@ Caosdb |« |7

. . an open scientific database
Data Publication © Sotwre ° meo

[TTTT T N

I

|

t

]

@salexan-x1 ~ % ipython

results = db.execute queryfl

Aims of the CaosDB Project

o Flexibility: Data models frequently change in scientific environments
@ Linking of arbitrary data types with arbitrary file sizes

e Management of raw data, algorithms, analyses and publications (c.f.
Spreckelsen et.al., Data 2020, 10.3390/data5020043)

o Integration of decentrally organized data sources
@ Integration of arbitrary data acquisition- and data analysis software

@ Built on robust (open source) software and standards

https://doi.org/10.3390/data5020043

Common Misconceptions (1)

e "Just give me your data model, then | can design a database (schema)
for your data..."

@ User might not know the (complete) data model yet.
e Data model design and RDMS not completely independent.

o Database schema will probably be outdated upon completion.

Possible Solution: Flexible Data Model

@ Use a system that allows for (extensive) modifications of the data
model.

o Start with a simple data model and add more details later.

@ The data model will be improved iteratively.

Flexible Semantic Data Modell

Data Model Query Language CQL

FIND Experiment with Comment like "*successful*"

FIND Analysis which is referenced by
Experiment with Comment like "*successful*"

n
N

. ——&,
,(Analysis Publication
LsourceExperlment: Experiment sourceAnalysis: Analysis

sourceSimulation: Simulation

Experiment
Comment: Text

CameraExperiment

FIND CameraExperiment with Comment like "*successful*"
and Device = "Camera 1"

VideoFile: File
Device: Text

1st Practical Session: CaosDB and data models

Live Presentation

CQL: CaosDB Query Language

Why another language?
@ "There is SPARQL as a standard language."

o "Why implement a search language at all and not just create a user
interface?"

Recent use case

Let's build a query!

First or last name starts with letter "M"

Beginning of 20th century
@ From the United Kingdom

Female

o Writer

SPARQL

select distinct 7item 7itemLabel 7fullName where {
7item wdt:P31 wd:Q5; wdt:P27 wd:Q145; wdt:P21 wd:Q6581072;
wdt:P106 wd:Q36180; wdt:P569 7birthday;
wdt:P570 ?diedon; wdt:P734 [rdfs:label ?familyName];
wdt:P735 [rdfs:label ?givenName].
BIND(concat(?givenName, " ", ?familyName) as 7fullName)
FILTER(?birthday > "1870-01-01"""xsd:dateTime
&& 7diedon < "1950-01-01"""xsd:dateTime)
filter(lang(?familyName) = "en")
filter(lang(?givenName) = "en"
filter(regex(?givenName, "M.*") || regex(?familyName, "M.*")
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "en" } }

SPARQL

select distinct 7item 7itemLabel 7fullName where {
7item wdt:P31 wd:Q5; # Any instance of a human.
wdt:P27 wd:Q145; # United Kingdom
wdt:P21 wd:Q6581072; # female
wdt:P106 wd:Q36180; # wraiter
wdt:P569 7birthday;
wdt:P570 7?diedon;
wdt:P734 [rdfs:label 7familyName];
wdt:P735 [rdfs:label ?givenName].
BIND(concat(?givenName, " ", ?familyName) as 7fullName)
FILTER(?birthday > "1870-01-01"""xsd:dateTime
&& 7diedon < "1950-01-01"""xsd:dateTime)
filter(lang(?familyName) = "en")
filter(lang(?givenName) = "en"
filter(regex(?givenName, "M.*") || regex(?familyName, "M.*")
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "en" } }

FIND Woman with occupation = writer and
(first_name like "Mx" or last_name like "M*") and
birthday > 1870 and died < 1950 and citizenship = UK

Use cases for a high level query language

o Automatic data processing
o Complex searches

@ Users who like terminals more than graphical user interfaces (There
are more of them than you think!)

2nd Practical Session: Python API

Live Presentation

Common Misconceptions (2)

@ "Just migrate all your data into this system to obtain the perfect data
management system. .. "

@ Vendor-Lock-in effects?

o Different needs of users might require different solutions.
Interoperability?

o What to do if some data does not fit?

Possible Solution: Data Migration / Data Crawler

e Don't migrate data, synchronize it!

Update information in RDMS based on file system.
@ RDMS and file system can be used simultaneously.

@ Prevents lock-in

(Additionally) allows for operation without RDMS

The Crawler (1)

Data Acquisition @ Ca OSd b
N an open scientific database
i |Fi|e System |

{ '
ExperimentalData/
|Crawler |
Experiment-CFood
SimulationData/

Simulation-CFood

Analysis-CFood

py

svg| —J>| DataAnalysis/

N

Nor———

Analysi e
Experiment “ nawysis Publication
r riment: rimen P R
Comment: Text sou ceE?<pe ! 'e ; Expe s sourceAnalysis: Analysis
sourceSimulation: Simulation

The Crawler (2)

SimulationData/
—> 2021_cardiac/
—> 2021-04-05_run1/

IB metadata.csv

@ output.h5

Isim_cfood.py |

(Matcher

SimulationData/
<project>/
<date>_<identifier>/
metadata.csv
|

(1dentifiable

project = 2021_cardiac
date = 2021-04-05
identifier = run1

< Caosdb
an open scientific database

Yes Update
> existing
record

No
Insert new
—>

record

Does Identifiable already exist?

FIND Simulation with project = ...
and with date = ...
and with identifier = ...

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1

results:
metadata.csv

B @ output.h5

The Crawler (3)

Old record

Adapt data model and CFood definition

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1

results:
metadata.csv

@ B output.h5

? (Version 1)

simulation

[sim_cfood.py |

(e

Simulation

results: List<File>
project: Text
date: datetime
identifier: Text

| Identifiable l
@ output.h5

Extract

parameters phi
and rho from file.

H— results: List<File>
phl - 4 project: Text
date: datetime
rho = 5.5 lientinier: ext

phi: Floating point
rho: Floating point

Run the Crawler

G

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1
phi=4

rho=5.5

results:

metadata.csv
a B output.h5

@ Version 2)

FIND Simulation with rho > 3

Common Misconceptions (3)

"Just let an Al/ML-system categorize and organize your data
automatically. .. "

Users need to adapt to the structure, that the Al came up with.

Probably not enough training data for your specific use case.

@ Users should be aware of their own data models.

Might be too unreliable for automatic processing of structures.

Possible Solution: Human readable crawler specification

@ Describes data in sufficient detail
@ Allows to synchronize data with RDMS

@ Serves as data documentation

3rd Practical session: Crawler

Live Presentation

Thank You!

More information about CaosDB:

@ http://www.bmp.ds.mpg.de/software/caosdb/
@ https://gitlab.com/caosdb
@ https://doi.org/10.3390/data4020083

@ https://caosdb.org/

www.bmp.ds.mpg.de E E

@ Caosdb =

an open scientific database

http://www.bmp.ds.mpg.de/software/caosdb/
https://gitlab.com/caosdb
https://doi.org/10.3390/data4020083
https://caosdb.org/

