
Pragmatic semantic data management with CaosDB

Alexander Schlemmer, Ulrich Parlitz, Stefan Luther

Max Planck Institute for Dynamics and Self-Organization

2022-03-16

www.bmp.ds.mpg.de

Overview

CaosDB Overview

Data Models

CQL and Python API

Crawler

What is CaosDB?

Semantic Research Data Management System (RDMS) Fitschen
et.al., Data 2019, 10.3390/data4020083

Developed at the Max Planck Institute for Dynamics and
Self-Organization (Göttingen) since 2010

Open Source project since 2018: gitlab.com/caosdb

Commercial support available by IndiScale GmbH1 (since 2019)

Currently approximately 15 instances in very different scientific
disciplines

1A.S. is a co-founder of IndiScale.

https://doi.org/10.3390/data4020083
https://gitlab.com/caosdb

CaosDB

Data Acquisition

Data Publication

e.g. Electronic Lab
Notebook (ELN)

Data Repository

Data Analysis

FileSystem

Crawler

WebUI

Python-Interface

Aims of the CaosDB Project

Flexibility: Data models frequently change in scientific environments

Linking of arbitrary data types with arbitrary file sizes

Management of raw data, algorithms, analyses and publications (c.f.
Spreckelsen et.al., Data 2020, 10.3390/data5020043)

Integration of decentrally organized data sources

Integration of arbitrary data acquisition- and data analysis software

Built on robust (open source) software and standards

https://doi.org/10.3390/data5020043

Common Misconceptions (1)

"Just give me your data model, then I can design a database (schema)
for your data. . . "

User might not know the (complete) data model yet.

Data model design and RDMS not completely independent.

Database schema will probably be outdated upon completion.

Possible Solution: Flexible Data Model

Use a system that allows for (extensive) modifications of the data
model.

Start with a simple data model and add more details later.

The data model will be improved iteratively.

Flexible Semantic Data Modell

Data Model

Exper iment

Comment : Text

A n a l y s i s

sourceExper iment: Exper iment
sourceSimulat ion: S imulat ion

S i m u l a t i o n

P u b l i c a t i o n

sourceAnalys is : Ana lys is

Query Language CQL

FIND Experiment with Comment like "*successful*"

FIND Analysis which is referenced by
 Experiment with Comment like "*successful*"

FIND CameraExperiment with Comment like "*successful*"
 and Device = "Camera 1"C a m e ra E x p e r i m e n t

V ideoF i le : F i l e
D ev i c e : Tex t

1st Practical Session: CaosDB and data models

Live Presentation

CQL: CaosDB Query Language

Why another language?

"There is SPARQL as a standard language."

"Why implement a search language at all and not just create a user
interface?"

Recent use case

Let’s build a query!

First or last name starts with letter "M"

Beginning of 20th century

From the United Kingdom

Female

Writer

SPARQL

select distinct ?item ?itemLabel ?fullName where {
?item wdt:P31 wd:Q5; wdt:P27 wd:Q145; wdt:P21 wd:Q6581072;

wdt:P106 wd:Q36180; wdt:P569 ?birthday;
wdt:P570 ?diedon; wdt:P734 [rdfs:label ?familyName];
wdt:P735 [rdfs:label ?givenName].

BIND(concat(?givenName, " ", ?familyName) as ?fullName)
FILTER(?birthday > "1870-01-01"^^xsd:dateTime

&& ?diedon < "1950-01-01"^^xsd:dateTime)
filter(lang(?familyName) = "en")
filter(lang(?givenName) = "en")
filter(regex(?givenName, "M.*") || regex(?familyName, "M.*"))
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "en" } }

SPARQL

select distinct ?item ?itemLabel ?fullName where {
?item wdt:P31 wd:Q5; # Any instance of a human.

wdt:P27 wd:Q145; # United Kingdom
wdt:P21 wd:Q6581072; # female
wdt:P106 wd:Q36180; # writer
wdt:P569 ?birthday;
wdt:P570 ?diedon;
wdt:P734 [rdfs:label ?familyName];
wdt:P735 [rdfs:label ?givenName].

BIND(concat(?givenName, " ", ?familyName) as ?fullName)
FILTER(?birthday > "1870-01-01"^^xsd:dateTime

&& ?diedon < "1950-01-01"^^xsd:dateTime)
filter(lang(?familyName) = "en")
filter(lang(?givenName) = "en")
filter(regex(?givenName, "M.*") || regex(?familyName, "M.*"))
SERVICE wikibase:label
{ bd:serviceParam wikibase:language "en" } }

CQL

FIND Woman with occupation = writer and
(first_name like "M*" or last_name like "M*") and
birthday > 1870 and died < 1950 and citizenship = UK

Use cases for a high level query language

Automatic data processing

Complex searches

Users who like terminals more than graphical user interfaces (There
are more of them than you think!)

2nd Practical Session: Python API

Live Presentation

Common Misconceptions (2)

"Just migrate all your data into this system to obtain the perfect data
management system. . . "

Vendor-Lock-in effects?

Different needs of users might require different solutions.
Interoperability?

What to do if some data does not fit?

Possible Solution: Data Migration / Data Crawler

Don’t migrate data, synchronize it!

Update information in RDMS based on file system.

RDMS and file system can be used simultaneously.

Prevents lock-in

(Additionally) allows for operation without RDMS

The Crawler (1)

Data Acquisition

csv

npy

xlsx
h5

tiff

ExperimentalData/

File System

DataAnalysis/

h5
npy

SimulationData/

py
svg

txt

Experiment-CFood

Crawler

Analysis-CFood

Simulation-CFood

Exper im en t

Comment : Text

A n a l y s i s

sourceExper iment: Exper iment
sourceSimulat ion: S imulat ion

S i m u l a t i o n

P u b l i c a t i o n

sourceAnalys is : Ana lys is

The Crawler (2)

SimulationData/

2021_cardiac/

2021-04-05_run1/

csv

h5

metadata.csv

output.h5

sim_cfood.py

Matcher
SimulationData/
 <project>/
 <date>_<identifier>/
 metadata.csv

Identifiable
project = 2021_cardiac
date = 2021-04-05
identifier = run1

Does Identifiable already exist?

FIND Simulation with project = ...
 and with date = ...
 and with identifier = ...

Yes

No

Update
existing
record

Insert new
record

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1
results:

csv h5

metadata.csv
output.h5

The Crawler (3)

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1
results:

csv h5

metadata.csv
output.h5

Old record

phi = 4
rho = 5.5

Adapt data model and CFood definition

sim_cfood.py

Matcher

Identifiable

h5 output.h5

Extract
parameters phi
and rho from file.

S i m u l a t i o n

results: L ist<Fi le>
pro ject : Text
date: datet ime
ident ifi er : Text

S i m u l a t i o n

results: L ist<Fi le>
pro ject : Text
date: datet ime
ident ifi er : Text
phi : F loat ing point
rho: F loating point

Run the Crawler

RECORD Simulation

project = 2021_cardiac
date = 2021-04-05
identifier = run1
phi = 4
rho = 5.5
results:

csv h5

metadata.csv
output.h5

Version 1

Version 2

FIND Simulation with rho > 3

Common Misconceptions (3)

"Just let an AI/ML-system categorize and organize your data
automatically. . . "

Users need to adapt to the structure, that the AI came up with.

Probably not enough training data for your specific use case.

Users should be aware of their own data models.

Might be too unreliable for automatic processing of structures.

Possible Solution: Human readable crawler specification

Describes data in sufficient detail

Allows to synchronize data with RDMS

Serves as data documentation

3rd Practical session: Crawler

Live Presentation

Thank You!

More information about CaosDB:

http://www.bmp.ds.mpg.de/software/caosdb/

https://gitlab.com/caosdb

https://doi.org/10.3390/data4020083

https://caosdb.org/

www.bmp.ds.mpg.de

http://www.bmp.ds.mpg.de/software/caosdb/
https://gitlab.com/caosdb
https://doi.org/10.3390/data4020083
https://caosdb.org/

