Programming and Computational Physics Education in the Physics Curriculum at University of Göttingen

Fabian Heidrich-Meisner Institute for Theoretical Physics, Georg-August-Universität Göttingen DPG SMuK Spring Meeting, Dresden, March 23, 2023

Status Quo & Wishlist

Implementation of Data Literacy & Programming Skills in Göttingen's curriculum on

- Bachelor Level
- Master Level
- PhD/Research/Theses Level

Outlook

Outline

Data literacy: Orgin and purpose of data, algorithms, formats, interpretation in physics context

Status Quo & Wishlist

Implementation of Data Literacy & Programming Skills in Göttingen's curriculum on

- Bachelor Level
- Master Level
- PhD/Research/Thoses Loval

Outlook

Own Research: Numerical Quantum Many-Body Methods My current role teaching of computational physics modules CRC 1073 Board member (for Research Data Management) Developed RDM policy for Condensed Matter Theory

Outline

Disclaimer: Personal view, from Condensed Matter Theory perspective !

Undergraduate Student

- (since they gave talks, wrote papers, thesis)
 - Know about Back-Up <u>and</u> do it
 - Data storage (long-term archiving)
 - ... the way to that result may be rocky ...

Status Quo

Graduate Student

- **Claim** (by personal experience, no statistics): After a PhD in physics, people typically master:
 - Programming skills (since they published)
 - Visualization

Status Quo ... and what do we lack? ... Wishlist

Claim (by personal experience, no statistics): After a PhD in physics, people typically master:

> Programming skills (since they published)

> > Visualization

(since they gave talks, wrote papers, thesis)

Data storage (long-term archiving)

... the way to that result may

Novel tools (ML, data mining)

Not an automatic given anymore

Public access?

```
Wild West style!
cool_code_v233.c
```

```
Know about Back-Up <u>and</u> do it
```

Documentation? Easy to retrieve? (Handily) Accessible?

FAIR principles

Semester 3

Experimentalphysik III

Klassische Feldtheorie

Mathematik für Physiker III

Profilierungsbereich

Profilierungsbereich

Semester 6

Spezialisierungspraktikum Bachelorarbeit

Weitere Einführungsvorlesung u./o. Schwerpunktsveranstaltung

Profilierungsbereich

Semester 3

Experimentalphysik III

Klassische Feldtheorie

Mathematik für Physiker III

Profilierungsbereich

Profilierungsbereich

Semester 6

Spezialisierungspraktikum Bachelorarbeit

Weitere Einführungsvorlesung u./o. Schwerpunktsveranstaltung

Profilierungsbereich

Studienaufbau

Numerical Homework Assignments (in most courses) — simple algorithms, Python, visualisation

Example: Integrated Exercises in ExPhys/Theory Course

Georg-August-Universität Göttingen Institut für Theoretische Physik Prof. Dr. L. Covi, Priv.-Doz. Dr. S.R. Manmana

2. Übungsblatt zur Vorlesung Analytische Mechanik

Hausaufgabe 2.3 Verschiedene Näherungen beim Pendel Computeraufgabe 1+2+1+3 Punkte Die Bewegung eines gedämpften Pendels der Länge L im Gravitationsfeld der Erde lässt sich durch

die DGL zweiter Ordnung

beschreiben, wobei θ der Auslenkungswinkel aus dem Ruhezustand und γ die Dämpfung ist.

Solving ordinary differential equations

SoSe 2022

$$-\gamma \frac{d heta}{dt} - rac{g_E}{L}\sin heta$$

Example: Integrated Exercises in ExPhys/Theory Course

den Schwingfall. Plotten Sie $\theta(t)$ sowie die Trajektorie im Phasenraum. nischen Näherung für das Pendel?

Hinweise:

Gehen Sie Schritt für Schritt durch das Jupyter-Notebook, so dass Sie die einzelnen Implementationsund Rechenschritte nachvollziehen können. Ergänzen Sie den bereits vorhandenen codes an den mit ??? markierten Stellen. Ergänzen Sie das Notebook weiterhin an den entsprechend markierten Stellen, um die benötigten Plots zu erstellen. Nutzen Sie den im Notebook implementierten Euler-Algorithmus und achten Sie darauf, einen Zeitschritt zu wählen, der klein genug ist. Speichern Sie die erstellten Plots als .png und schicken Sie diese mit der Lösung der übrigen Aufgaben an Ihren Tutor. Nutzen Sie die Gelegenheit und spielen Sie mit den Parametern!

Ordinary DEs, Python, Jupiter notebooks, plotting, comparison to limiting cases

d) Lösen Sie mithilfe des auf StudIP geladenen Jupyter-Notebooks AM_EX2.ipynb die sich aus Teil a) ergebende Bewegungsgleichung des gedämpften harmonischen Oszillators numerisch für

Lösen Sie danach mithilfe dieses Jupyter-Notebooks die DGL aus Teil c). Plotten Sie die Differenz der numerischen Lösungen für $\theta(t)$, die sich aus beiden DGL ergibt und plotten Sie die Phasenraumtrajektorie beider Lösungen im selben Plot. Führen Sie diese Simulationen für verschiedene Werte von $\theta(0)$ durch. Ab welchem Auslenkwinkel ergibt sich ein sichtbarer Unterschied zwischen den beiden Lösungen? Was lernen Sie daraus bzgl. der Qualität der harmo-

Studienaufbau

Central Moduls: Hands on tutorials, programming projects, applications — C/C++

11

Computergestütztes wiss. Rechnen — Computational Methods

4th Semester, Lecture 2SWS, Tutorial 4 SWS, weekly sheets 4 mandatory small homework projects, Grade earned for one-week programming project Must use git repos — code & data, versioning!

Core list of topics

Ordinary differential equations — Numerical Integration Random numbers and Monte Carlo Integration Partial differential equations — Discretization Linear Algebra tools Time-dependent PDEs **Examples from (selection varies):**

Classical Mechanics Eletrodynamics (Single-particle) Quantum mechanics Biophysics, Complex Systems,

. . .

Computational Methods: Example I

Aufgabe 33 Freies Teilchen im Kasten

Ein Teilchen der Masse m bewege sich frei in einer Dimension zwischen den Wänden eines Kastens der Länge L. Zur numerischen Lösung setzen wir L = 1, sowie $\hbar = m = 1$. Wir diskretisieren die Ortsachse mit $x_i = i\Delta x$ für $0 \le x \le L$ $(N\Delta x = L)$.

ersetzen:

$$\psi''(x) \approx \frac{\psi(x + \Delta x) + \psi(x - \Delta x) - 2\psi(x)}{(\Delta x)^2}.$$
(4)

- ten Sie die ersten drei Eigenvektoren.

1. Stellen Sie den Hamiltonoperator H als Matrix H in der computational basis auf, indem Sie die zweite Ableitung in der Schrödingergleichung durch finite Differenzen

2. Bestimmen Sie die Figenwerte E_{α} und Eigenvektoren ψ_{α} von H für N = 500(Sie können dazu die LAPACKE_dsyev-Furktion aus der LAPACK-Bibliothek verwenden). Beachten Sie dabei, dass $\psi(0) = \psi(L) = 0$ gilt. Vergleichen Sie die ersten zwanzig Eigenwerte mit der exakten analytischen Lösung des Systems. Plot-

3. Variieren Sie dazu Δx zwischen 1 und 10^{-3} und plotten Sie den Fehler für die ersten vier Eigenwerte, d.h. das Verhältnis der numerisch bestimmten Eigenwerte zu den

Computational Methods: Example II

Aufgabe 34 (An)harmonischer Oszillator

genfrequenz $\omega/(2\pi)$ lautet

 $\hat{H}_0 = \frac{1}{2}$

Dabei ist \hat{x} der Ortsoperator und \hat{p} der Impulsoperator. Wir fügen nun eine Störung hinzu, so dass der Gesamt-Hamiltonoperator $H = H_0 + H'$ lautet, wobei

mit einer Konstanten g, die die Stärke der Störung bestimmt. Verwenden Sie $\hbar = \omega =$ m = 1.

der ersten drei Eigenvektoren.

Der Hamiltonoperator eines ungestörten harmonischen Oszillators mit Masse m und Ei-

$$\frac{1}{m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2.$$

$$\hat{H}' = g\hat{x}^4$$

1. Bestimmen Sie numerisch die Eigenwerte und Eigenvektoren für den Fall g = 0, indem Sie die x-Achse diskretisieren mit $x_i = i\Delta x - L$ für $-L \leq x < L$ ($N\Delta x =$ 2L) und H_0 als Matrix H in der computational basis aufstellen und diagonalisieren. Dazu kann wie in Aufgabe 33 LAPACK verwendet werden. Verwenden Sie L = 5und N = 500. Plotten Sie die 20 niedrigsten Eigenwerte und vergleichen Sie mit den exakten analytischen Ergebnissen für den ungestörten harmonischen Oszillator. Wieso treten Abweichungen auf? Plotten Sie die Absolutquadrate der Komponenten

Computational Methods: Example III

Tutorials Aufgabe 10 Arrays und Pointer

Dieses Tutorial zeigt Ihnen einige grundlegende Anwendungen von Arrays bzw. Heap-Speicher. Bearbeiten Sie die Aufgaben nebenher, während Sie das Tutorial durchgehen.

Sie können Arrays anlegen, um auf eine Vielzahl von Daten über einen Index strukturiert zuzugreifen. Der Befehl

int a[100];

legt ein Array aus 100 Integers auf dem Stapel (Stack) an. Analog können Sie mit

```
double a[100];
```

ein Array aus 100 Doubles anlegen. Das funktioniert mit allen Datentypen, auch Strukturen. Der Zugriff auf die einzelnen Elemente des Arrays erfolgt über einen Index (beginnend bei 0) in eckigen Klammern. Der Befehl

a[10] = 1001;

weist dem elften Integer den Wert 1001 zu.

Die Stärke von Arrays liegt darin, dass der Index dynamisch programmiert werden kann. Sie können z.B. mit einer for-Schleife durch das gesamte Array gehen und alle Werte ausgeben:

5

Besides programming exercises, **tutorials** on: Basics of programming, Makefile, own libraries, Lapack, Plotting, Histograms, GSL, ...

Tutorials

Aufgabe 5 - Wiederverwendung von Code

 Kopieren Sie die C Datei Ihrer Bearbeitung der Aufgabe 3 vom Blatt 1 (d.h. von Ihrem Fehlerfunktions-Projekt) in ein neues Verzeichnis. Sie sollten dort folgende Funktionen erstellt haben:

New path: Applied Computer Science B.Sc. with Focus on **Computational Physics**

https://www.uni-goettingen.de/de/619510.html

New path: Applied Computer Science B.Sc. with Focus on Computational Physics

j) Bachelor-Studiengang "Angewandte Informatik" mit Studienschwerpunkt "Computational Physics"

Sem. ΣC	Fachstudium (96 C + 6 C)			Studienschwerpunkt "Comp. Physics" (42 C – 6 C) Wahlmodule (10 C)			Schlüsselkompetenzen (20 C)	
	Modul	Modul	Modul	Modul	Modul	Modul		Modul
1. Σ 31 C	B.Inf.1101 Grundlagen der Informatik und Programmierung 10 C	B.Mat.0831 Mathematik für Studierende der Physik I 12 C	B.Mat.0803 Diskrete Mathematik für Studierende der Informatik 9 C					
2. Σ 32 C	B.Inf.1102 Grundlagen der Praktischen Informatik 10 C	B.Mat.0832 Mathematik für Studierende der Physik II 12 C					B.Inf.1801 Programmierkurs 5 C	B.Inf.1802 Allgemeines Programmier- praktikum 5 C
3. Σ 32 C	B.Inf.1103 Algorithmen und Datenstrukturen 10 C		B.Inf.1206 Datenbanken 5 C	B.Phy.2101 Experimental- physik I 6 C	B.Phy.2201 Theorie I: Mechanik und Quantenmechanik 6 C		Fächerübergreifende Schüssel- kompetenzen 5 C	
4. Σ 27 C	B.Inf.1201 Theoretische Informatik 5 C	B.Inf.1209 Softwaretechnik 5 C	B.Inf.1210 Computersicherheit und Privatheit 5 C	B.Phy.2102 Experimental- physik II 6 C	B.Phy.1602 Computer- gestütztes wiss. Rechnen 6 C			
5. Σ 30 C	B.Mat.804 Diskrete Stochastik für Studierende der Informatik 9 C	B.Inf.1204 Telematik / Computernetzwerke 5 C	B.Inf.1211 Sensordaten- verarbeitung 5 C	Themengebiet "Grundlagen der Physik" - Wahlmodule 6 C			B.Inf.1803 Fachpraktikum I 5 C	
6. Σ 28 C	Bachelorarbeit (mit einem Thema aus "Computational Physics") 12 C			Themengebiet "Grundlagen der Physik" - Wahlmodule 4 C	B.Phy.8201 Angewandte Informatik in der Physik I 6 C	B.Phy.409 Einführung wiss. Arbeiten: Comp. Physics 6 C		
Σ 180 C	102 C (+12 C)			36 C + 10 C				

Attractive for physics students: Two degrees, More professional Training in Computer science

Master Physics Curriculum

Master Physics Curriculum

with specialisation in:

Master Physics with Theoretical Physics

5. Forschungsschwerpunkt "Theoretische Physik"

Sem.	Praktika (12 C)	Forschungsso	hwerpunkt "Theore (56 C)	Profilierungs- bereich math nat. (10 C)	Schlüssel- kompetenzen (12 C)	
ΣС	Modul	Modul	Modul	Modul	Modul	Modul
1. Σ 30 C	M.Phy.1404 Methods of Computational Physics (Wahlpflicht) 6 C	M.Phy.5401 Advanced Statistical Physics (Pflicht) 6 C	B.Phy.5402 Advanced Quantum Mechanics (Pflicht) 6 C		M.Phy.413 General Seminar (Pflicht) 4 C	Schlüssel- kompetenzen (Wahlpflicht) 6 C
2. Σ 30 C	M.Phy.1405 Advanced Computational Physics (Wahlpflicht) 6 C	M.Phy.415 Research Seminar Theoretical Physics (Pflicht) 4 C	M.Phy.5403 Seminar Classical- Quantum Connections in Theoretical Physics (Wahlpflicht) 4 C	M.Phy.5406 Current Topics in Theoretical Physics (Wahlpflicht) 4 C	Mathematisch Naturwissen- schaftlicher Bereich (Wahlpflicht) 6 C	Schlüssel- kompetenzen (Wahlpflicht) 6 C
3. Σ 30 C		M.Phy.414 Research Lab Course in Theoretical Physics (Pflicht) 18 C	M.Phy.1610 Development and Realization of Scientific Projects in Theoretical Physics (Pflicht) 9 C	M.Phy.1609 Networking in Theoretical Physics (Pflicht) 3 C		
4. Σ 30 C		Master Thesis 30 C				
Σ 120 C	12 C	56 C (+ 30 C)			10 C	12 C

https://www.uni-goettingen.de/de/lehre/219703.html#stream

Total Enrolment ~ 20 students

Master Physics with Theoretical Physics

5. Forschungsschwerpunkt "Theoretische Physik"

	Praktika Forschungsschwerpunkt "Theoretical Physi Sem. (12 C) (56 C)			etical Physics"	Profilierungs- bereich math nat. (10 C)	Schlüssel- kompetenzen (12 C)	
	ΣС	Modul	Modul	Modul	Modul	Modul	Modul
ard ning S:	1. Σ 30 C	M.Phy.1404 Methods of Computational Physics (Wahlpflicht) 6 C	M.Phy.5401 Advanced Statistical Physics (Pflicht) 6 C	B.Phy.5402 Advanced Quantum Mechanics (Pflicht) 6 C		M.Phy.413 General Seminar (Pflicht) 4 C	Schlüssel- kompetenzen (Wahlpflicht) 6 C
namics	2.	M.Phy.1405 Advanced	M.Phy.415 Research Seminar	M.Phy.5403 Seminar Classical-	M.Phy.5406 Current Topics in	Mathematisch Naturwissen-	Schlüssel-
olution	Σ 30 C	Computational Physics (Wahlpflicht) 6 C	Theoretical Physics (Pflicht) 4 C	Connections in Theoretical Physics (Wahlpflicht) 4 C	(Wahlpflicht) 4 C	schaftlicher Bereich (Wahlpflicht) 6 C	(Wahlpflicht) 6 C
sional Body, s, lization,	3. Σ 30 C		M.Phy.414 Research Lab Course in Theoretical Physics (Pflicht) 18 C	M.Phy.1610 Development and Realization of Scientific Projects in Theoretical Physics (Pflicht) 9 C	M.Phy.1609 Networking in Theoretical Physics (Pflicht) 3 C		
dents!	4. Σ 30 C			Master Thesis 30 C			
	Σ 120 C 12 C 56 C (+ 30 C)			10 C	12 C		

6 Standa Programm projects Monte Ca Molecular dy Real-time evo In QM. Finite-dimens QM Many-E Lanczos Exact diagona . . .

30 – 60 stu

https://www.uni-goettingen.de/de/advanced+computational+physics+lab/617237.html

3 Advanced, **Research-oriented** Programming projects: Cross sections In parrticle physics, **Actice Brownian** motion, Dynamics in Quantum Many-Body, ...

~ 10 students

Methods of Computational Physics

Project 2: Ising model

Go to Stud.IP • Ubung: Methods of Computational Physics • CloCked to upload a single PDF document with your results and answers by November 22nd, 10am.

1. 1D Ising model (20 points)

3. Bonus: Wang–Landau Sampling

Project 3: Molecular dynamics

Go to Stud.IP • Übung: Methods of Computational Physics • CloCked to upload a single PDF document with your results and answers by December 6th, 10am.

1. Simulating Argon as a Lennard–Jones fluid (42 points)

Project 4: Partial differential equations (PDEs)

Go to Stud.IP • Übung: Methods of Computational Physics • CloCked to upload a single PDF document with your results and answers by December 20th, 10am.

Project 5: Quantum Monte Carlo

Go to Stud.IP • Ubung: Methods of Computational Physics • CloCked to upload a single PDF document with your results and answers by Januar 24th, 10am.

1. Variational Monte Carlo simulation of a Helium atom (30 points)

Project 6: Heisenberg chain and diagonalisation

WiSe 2022/23, Prof. Steffen Schumann

Graduate Program — PhD Students, Bachelor/Master theses

Graduate school: GAUSS @ Göttingen — good scientific practice

RDM training in DFG cooperative initiatives

RDM training In research groups

NFDI Initiatives with Goettingen Physics participation

Disclaimer: Strong Focus on Condensed Matter Perspectives & Needs

Example: CRC 1073 Atomic energy scale conversion

Experimental Solid State Physics Condensed Matter Theory Materials Physics Chemistry Theoretical Quantum Chemistry

Support offered, joint RDM goals, delocalised implementation Internal RDM seminars: Best practice examples from research groups RDM course offered by eResearch Alliance (RDM experts) Currently: Internal survey of status quo

Similar concepts in DFG FOR 2414 (Frankfurt), DFG FOR 5522 (pending initiative)

Example: Condensed Matter Theory groups

(AG Bloechl, FHM, Kehrein, Manmana)

Annual RDM training Seminar (summer term)

Ten-Year Archive

Published CMT RDM policy (on our webpage): Processed Data made public (since 2020)

> Internal project documentation, post-project documentation

RDM statements in Bachelor/Master thesis (Location of data/ git repo, access)

Prof. Dr. Fabian Heidrich-Meisner Universität Göttingen Institut für Theoretische Physik Friedrich-Hund-Platz 1 37077 Goettingen

Email: fabian.heidrich-meisner@unigoettingen.de

https://uni-goettingen.de/en/heidrich-meisner+group/649369.html

Example: Where do we publish Code and Data? Support Infrastructure

Currently Ancillary files on <u>arXiv.org</u>

GRO.data @ Göttingen Campus (interdisciplinary)

Future: Zenodo

or subject-specific repos

Data storage Gitlab Cloud services

GRO.data

Interdisciplinary public data repository

Example: <u>ArXiv.org</u>

$\exists \mathbf{\Gamma} \times iV > cond-mat > arXiv:2206.00985$

Condensed Matter > Strongly Correlated Electrons

[Submitted on 2 Jun 2022 (v1), last revised 26 Oct 2022 (this version, v2)]

Finite-temperature optical conductivity with density-m methods for the Holstein polaron and bipolaron with di

David Jansen, Janez Bonča, Fabian Heidrich-Meisner

Search Hel	Download: • PDF • Other formats (license)	Processed data
natrix renormalization group lispersive phonons	Ancillary files (details): • fig10/dmrg_GS_a.csv • fig10/dmrg_GS_b.csv • fig10/dmrg_GS_c.csv • fig10/dmrg_T_01_a.csv • fig10/dmrg_T_01_b.csv (100 additional files not shown)	
a, Media Demos Related Papers About arXivLabs	Current browse context: cond-mat.str-el < prev next > new recent 2206 Change to browse by: cond-mat	
ast?)	References & Citations NASA ADS Google Scholar Semantic Scholar 	
submit it here	Export Bibtex Citation Bookmark	

Example: GRO.data

GÖTTINGENRESEARCHONLINE DATA

GRO.data Göttingen eResearch Alliance

Metrics

423,189 Downloads

Publish your research data! Search, find, and cite data from the Göttingen Campus and beyond.

Göttingen Research Online is an institutional repository for the publication of research data at the Göttingen Campus. It is managed by the Göttingen eResearch Alliance, a joint group of SUB and GWDG. If you are interested in publishing your data here, please see our author instructions and get in touch with us. Open V Quick Start Guide

https://data.goettingen-research-online.de/

Example: GRO.data

Replication Data for: Real-time non-adiabatic dynamics in the onedimensional Holstein model: Trajectory-based vs exact methods

Version 1.2

ten Brink, Michael, 2022, "Replication Data for: Real-time non-adiabatic dynamics in the one-dimensional Holstein model: Trajectory-based vs exact methods", https://doi.org/10.25625/YDU1XT, GRO.data, V1

files can be found for both the figure scripts and the data structures.

Cite Dataset -

Learn about Data Citation Standards.

Publication	Subject 🕄	Physics M. ten Brink, S. Gräber, M. Hopjan, D. Jansen, J. Stolpp, F. Heidrich-I Real-time non-adiabatic dynamics in the one-dimensional Holstein m exact methods, J. Chem. Phys. 156, 234109 (2022). doi: 10.1063/5.0		
	Related Publication 🕢			
License	License/Data Use			
Metadata	Files Metadata Term	ns Versions		
	1 File			
	Replication_D dimensional_ Gzip Archive - 9 Published May 3 1 Download MD5: 9cf14a This TGZ file co	Data_for_Real-time_non-adiabatic_dynamics_in_the_one- Holstein_model_Trajectory-based_vs_exact_methods.tar.gz 00.4 MB 30, 2022		

J. Stolpp, F. Heidrich-Meisner, and P. E. Blöchl. dimensional Holstein model: Trajectory-based vs 2022). doi: 10.1063/5.0092063

Open ends, room for further development & discussion

What we have for sure

Programming skills: C/C++

Symbolic Software

Visualization: gnuplot, ..., Python, ...

Data storage & Back-Up

Use of Repositories

Know about FAIR principles on theses level

Know about Good Scientific Practice Principles

Aluminum (shiny) Standard

Data & Code publication

Professional Versioning

Professional Code & Data documentation

Statistical Analysis, professional

ML for everyone ?

"Advanced" FAIR principles

Machine learning & BIG data

Key points:

B.Sc.: Mandatory: Programming Course (C++/Python) **Computational Methods** Numerical examples in basic courses Visualization (via exemplary exercises, lab course) **Optional elements !**

Master: Example Theoretical Physics Strong focus on Comp. Physics

PhD/ Research/ Theses: RDM & FAIR principles

Thank you!

Summary

(Some) Relevant people in Göttingen

Prof. Martin Wenderoth Dean of Studies & team

Prof. Arnulf Quadt Experimental Lab Courses

PD Salvatore Manmana Coordination **Teaching Theory**

