Classical field models for condensates of light

Michiel Wouters

Outline

Lecture 1

- Stochastic classical field models for polariton and photon condensation
- Excitation spectrum and Goldstone mode

Lecture 2

- Scaling properties of the phase fluctuations
- Experimental observation of KPZ scaling

- I. Carusotto and C. Ciuti RMP 2013,
- I. Carusotto, J. Bloch and MW. Nat. Phys. Rev. 2022

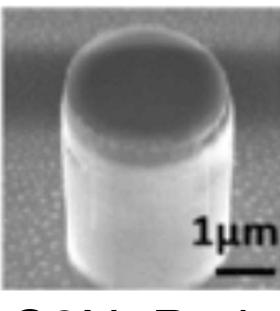
Single mode rate equation

$$\frac{dn}{dt} = R(n+1) - \gamma n$$

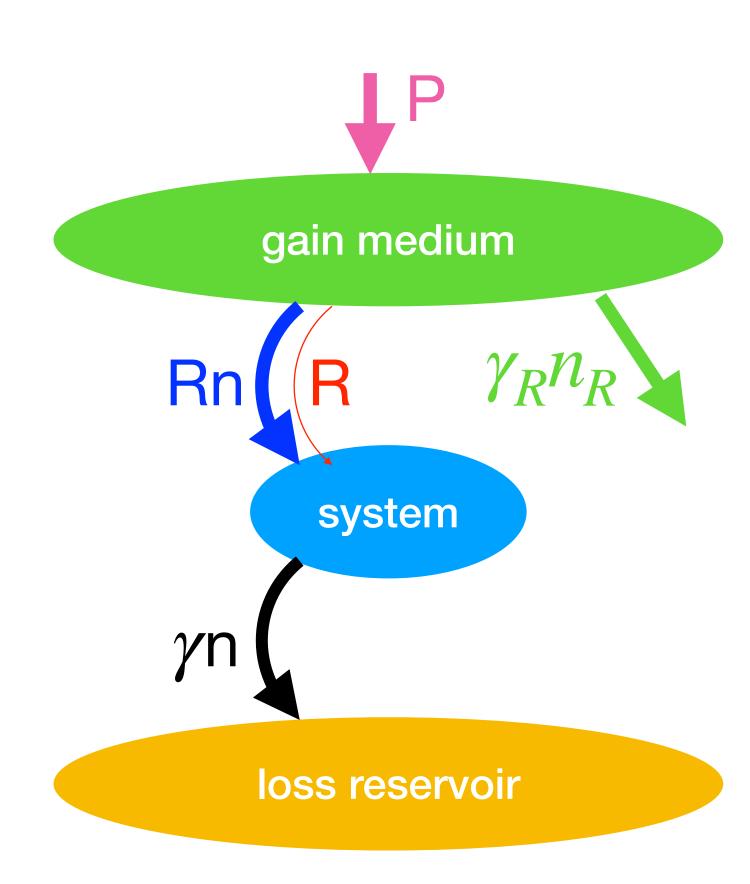
stimulated emission

spontaneous emission

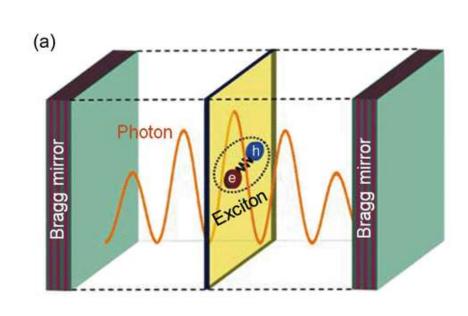
$$\Rightarrow \text{ steady state } n = \frac{\frac{1}{\gamma}}{\frac{\gamma}{R} - 1}$$

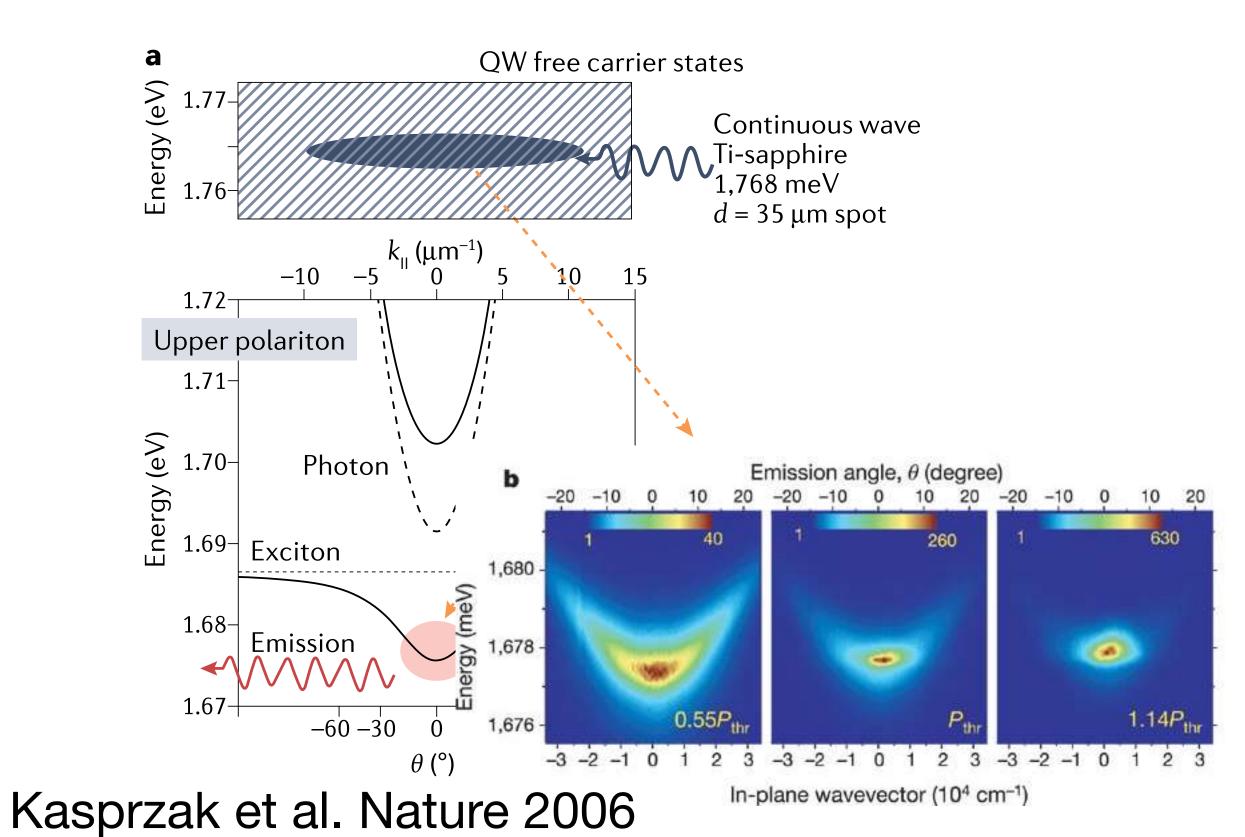


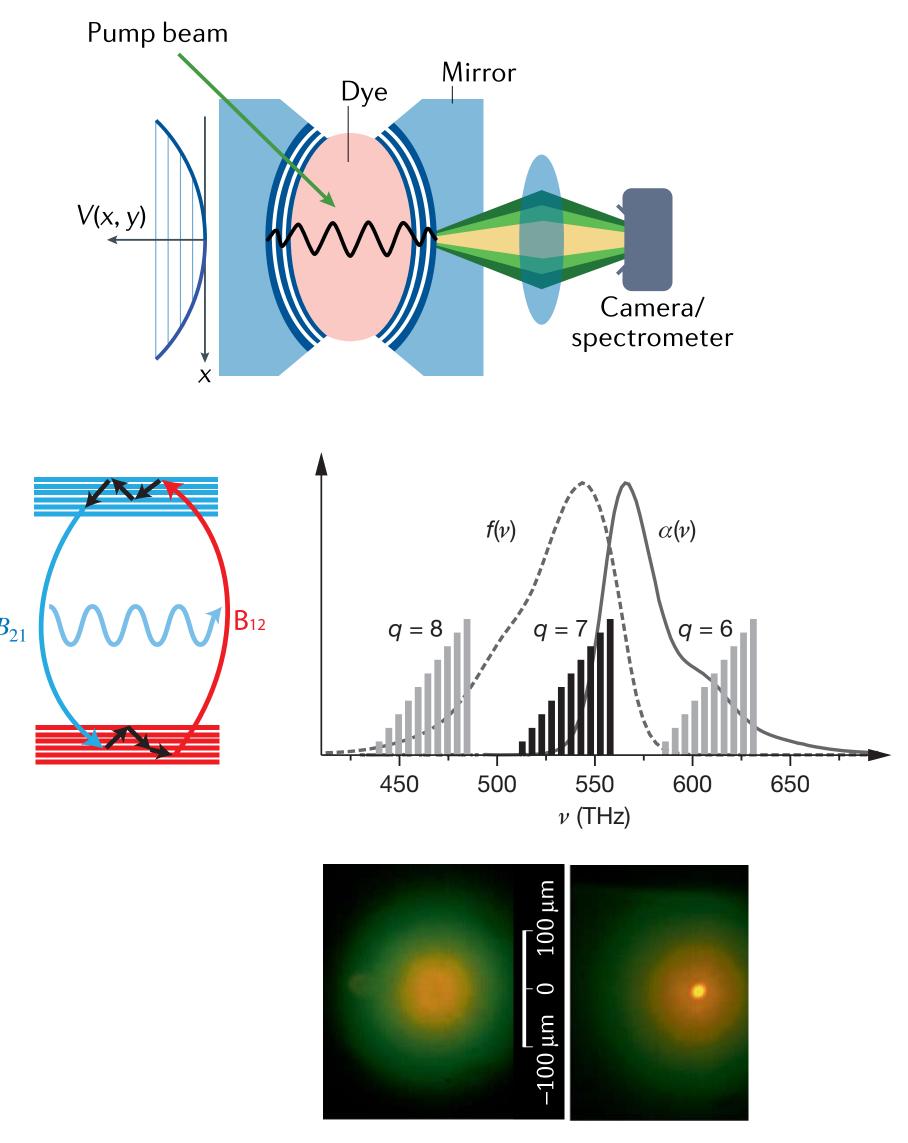
C2N, Paris



Polariton and photon condensation







Klaers et al. Nature 2010

Thermalization (photon condensates)

reabsorption

$$\frac{dn}{dt} = R(n+1) - An$$

stimulated emission

spontaneous emission

steady state
$$n = \frac{1}{\frac{A}{R} - 1}$$
 (requires $A > R$)

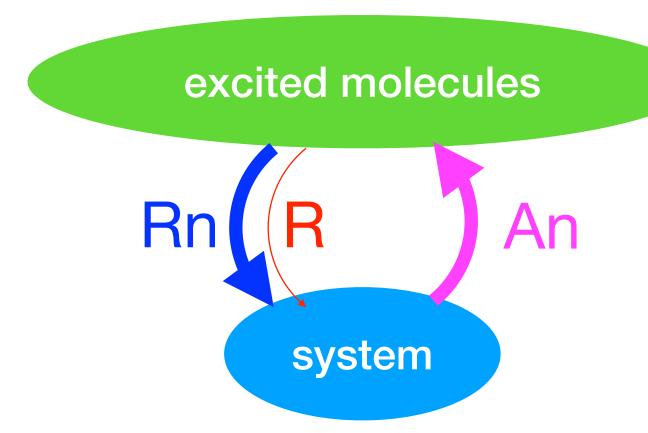
$$\frac{A}{R} = \exp\left(\frac{\epsilon - \mu}{k_B T}\right)$$

detailed balance Kennard-Stepanov Van Roosbroek-Shockley Kubo-Martin-Schwinger

$$n = \frac{1}{\exp\left(\frac{\epsilon - \mu}{k_B T}\right) - 1}$$

⇒ equilibrium Bose-Einstein distribution

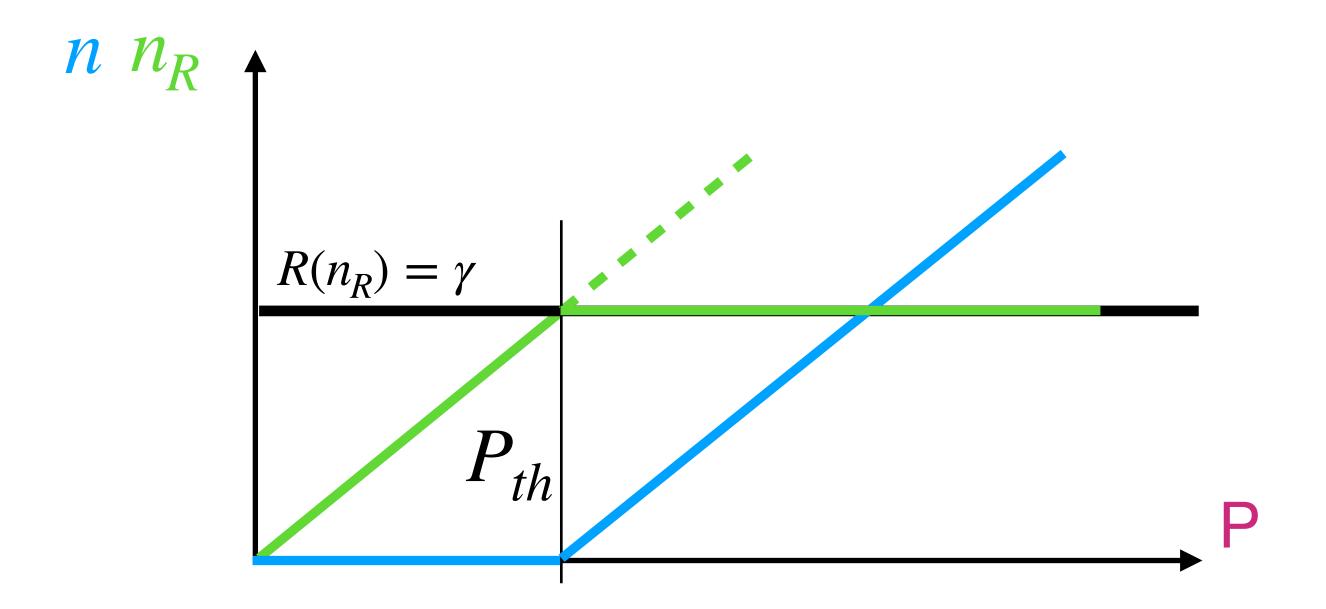
thermal equilibrium

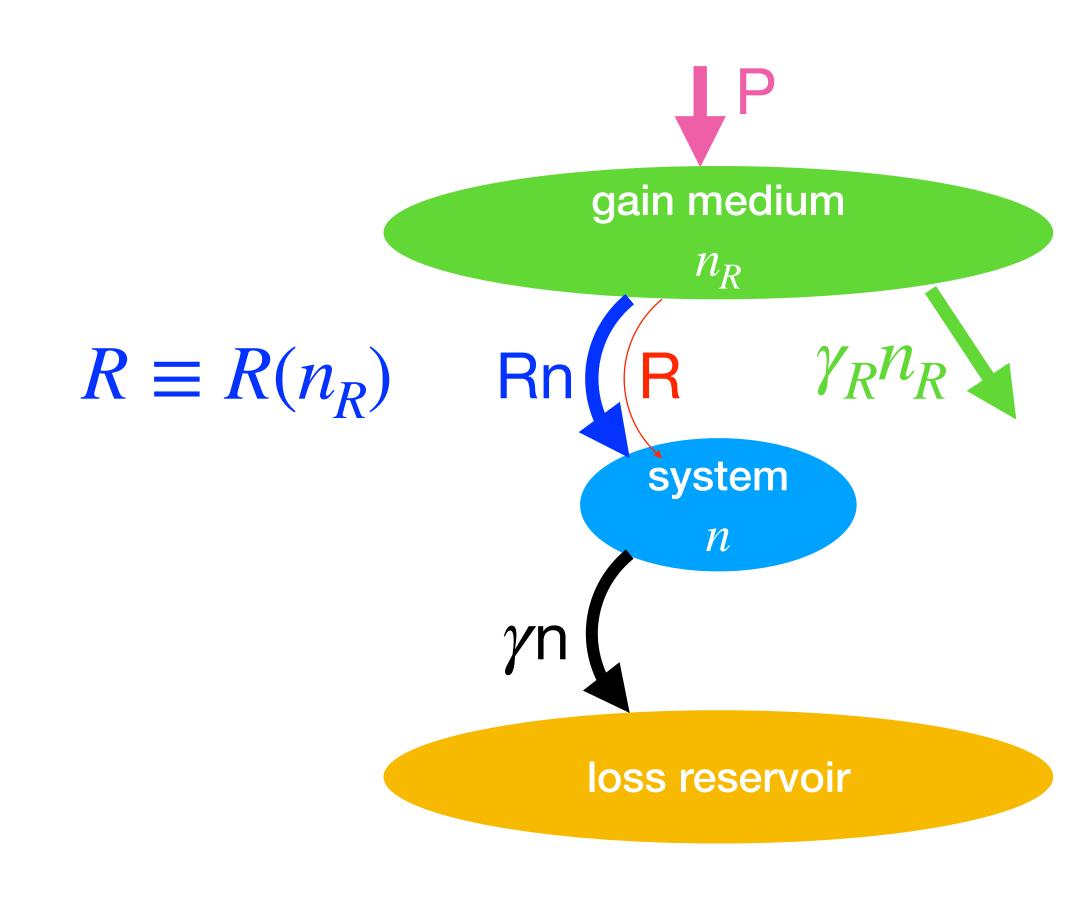


Reservoir dynamics

$$\frac{dn_R}{dt} = -R(n_R)(n+1) - \gamma_R n_R + P$$

$$\frac{dn}{dt} = R(n_R)(n+1) - \gamma_R n_R$$



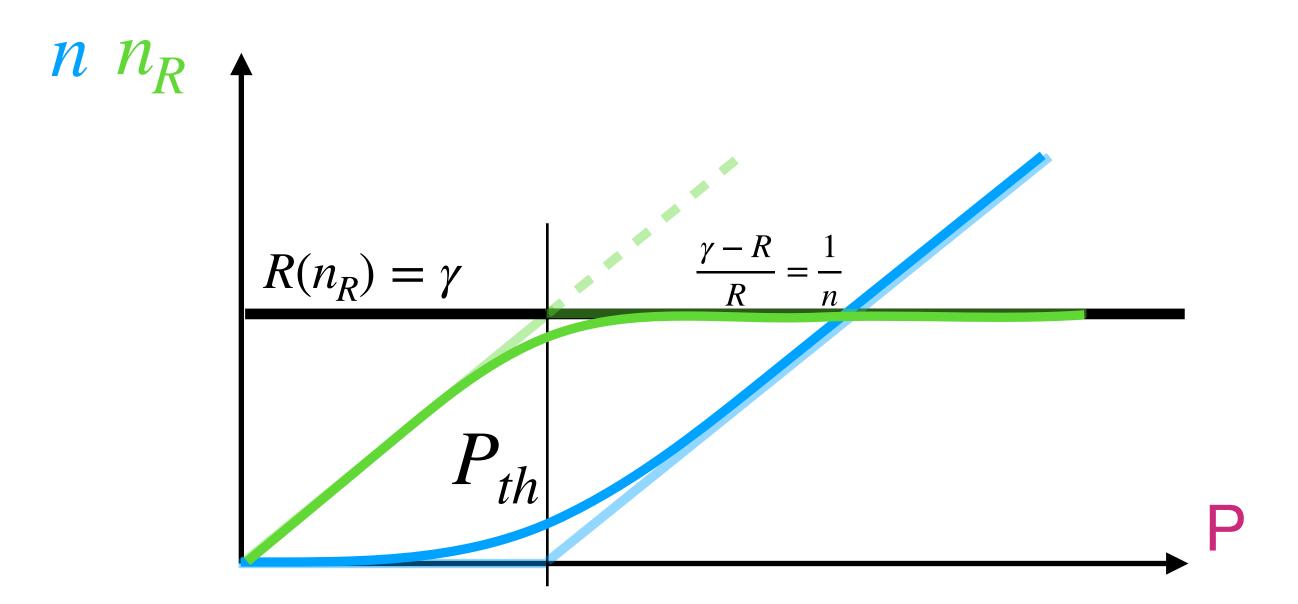


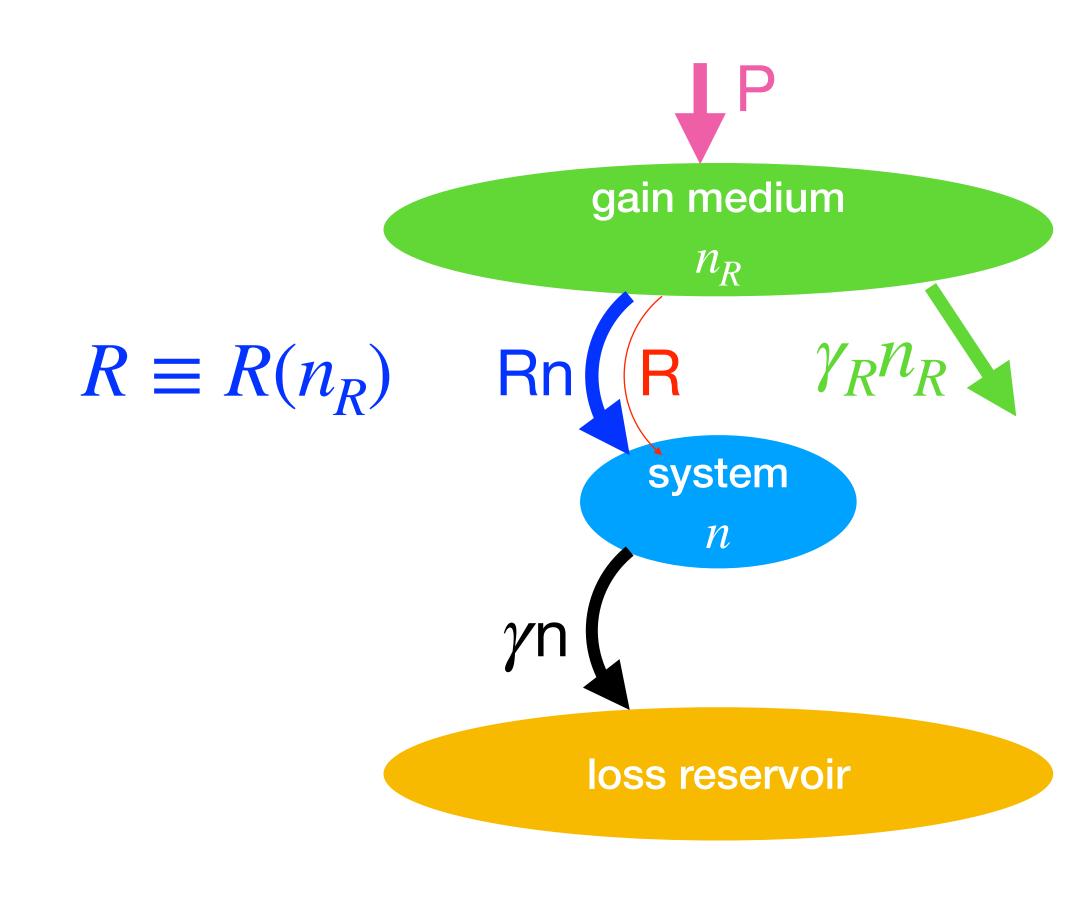
 $\gamma_R \rightarrow 0$: thresholdless

Steady state (with sp. em.)

$$\frac{dn_R}{dt} = -R(n_R)(n+1) - \gamma_R n_R + P$$

$$\frac{dn}{dt} = R(n_R)(n+1) - \gamma n$$





 $\gamma_R \rightarrow 0$: thresholdless

In terms of amplitude

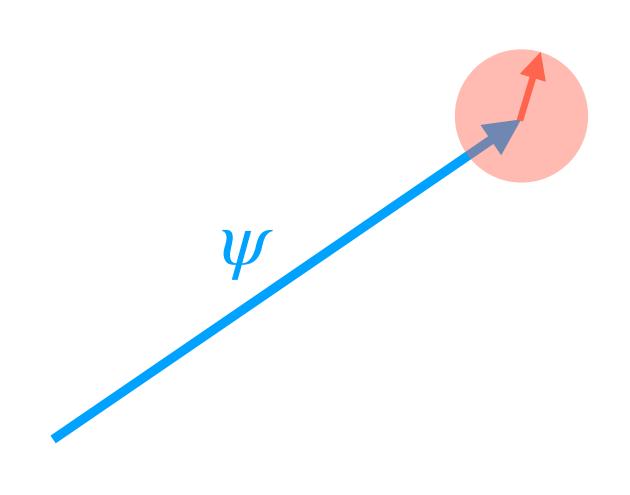
$$\psi = \sqrt{n} e^{i\theta}$$

$$\frac{d\psi}{dt} = \frac{1}{2}(R - \gamma)\psi \qquad \Rightarrow \qquad \frac{dn}{dt} = R(n + 1) - \gamma n$$

spontaneous emission is a quantum effect

Quantum fluctuations can be introduced in a first approximation through stochastic term in the amplitude equation.

Henry phasor model



add unit phasor at rate of spont. em. (R)

 \sim Wiener noise when avg. over times $\gg 1/R$

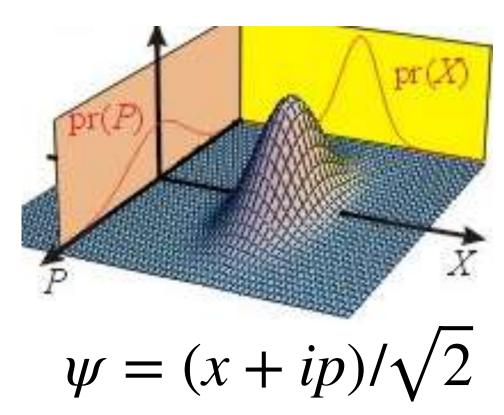
$$d\psi = \dots + \sqrt{R/2} \ dW$$
 with $\langle dW^*dW \rangle = 2 \ dt$

$$d\langle |\psi|^2 \rangle = R(\langle |\psi|^2 \rangle + 1) - \gamma \langle |\psi|^2 \rangle$$

Wigner formulation

Wigner quasi-probability distribution $P_W(\psi, \psi^*)$

Gives symmetrised quantum expectation values, e.g.



$$\langle \psi^* \psi \rangle_W = \frac{1}{2} \langle \hat{\psi}^\dagger \hat{\psi} + \psi \hat{\psi}^\dagger \rangle = \langle \hat{\psi}^\dagger \hat{\psi} \rangle + \frac{1}{2}$$
 1/2 quantum fluct. per mode

From operator correspondences (truncation when interacting)

$$d\psi = \frac{1}{2}(R - \gamma)\psi + \sqrt{\frac{R + \gamma}{4}}dW$$

cf. Henry $d\psi = \dots + \sqrt{R/2} \ dW$

Phase diffusion (Shawlow-Townes)

$$d\psi = [R(|\psi|^2) - \gamma] \psi dt + \sqrt{R/2} dW$$

$$\psi = \sqrt{n} e^{i\theta}$$

above threshold:
$$d\theta = \sqrt{\frac{R}{2n}} \ dW_{\theta}$$

with
$$\langle dW_{\theta}dW_{\theta}\rangle=dt$$

no restoring force because of spontaneous symmetry breaking

phase diffusion:
$$\langle [\theta(t) - \theta(0)]^2 \rangle = \frac{R}{2n} t$$

first order coherence: $\langle \psi^*(t)\psi(0)\rangle \approx n\langle e^{-i[\theta(t)-\theta(0)]}\rangle = ne^{-\frac{1}{2}\langle [\theta(t)-\theta(0)]^2\rangle} = e^{-\frac{R}{4n}|t|}$

Density fluctuations

•
$$R$$
 constant $\rightarrow g^{(2)} = \frac{\langle a^{\dagger}a^{\dagger}aa\rangle}{n^2} = 2$. $d\psi = [R(|\psi|^2) - \gamma]\psi dt + \sqrt{R/2} \ dW$

$$d\psi = [R(|\psi|^2) - \gamma] \psi dt + \sqrt{R/2} dW$$

- Gain saturation reduces density fluctuations
- Expand: $R(n_0 + \delta n) \approx R_0 R_1 \delta n$,

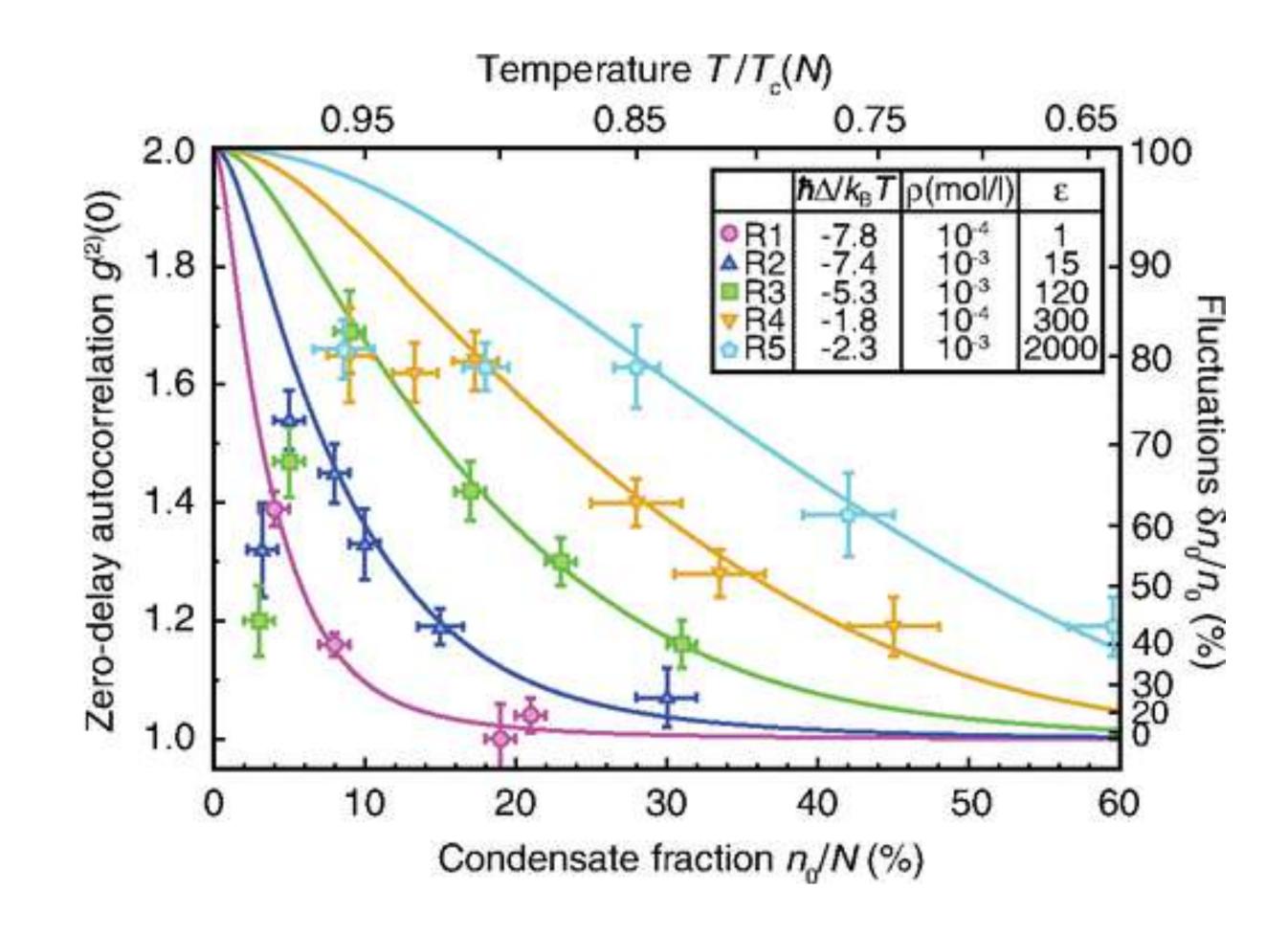
$$g^{(2)} = 1 + \frac{1}{1 + \frac{n_0^2}{M_{\text{eff}}}} \quad \text{with } M_{\text{eff}} = \frac{R_0}{R_1}$$

. Quasi-condensate:
$$\frac{n_{qc}}{n} = \sqrt{2 - g^{(2)}} : \psi = n_{qc}e^{i\theta} + \psi'$$

density fluctuations in phot. BEC

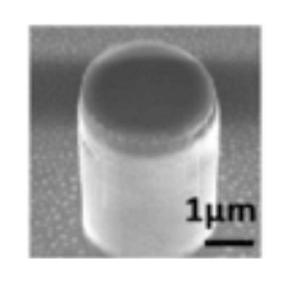
$$g^{(2)} = 1 + \frac{1}{1 + \frac{n_0^2}{M_{\text{eff}}}}$$

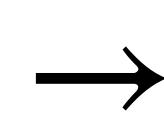
for phot. BEC: $M_{\rm eff} \approx M_{\rm exc}$

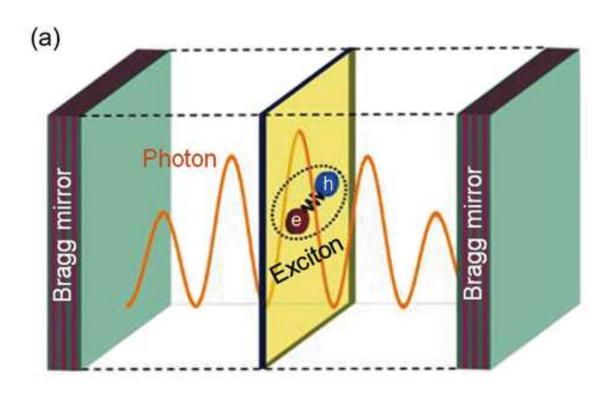


J. Schmitt et al. Phys. Rev. Lett. 112, 030401 (2012)

Spatially extended systems





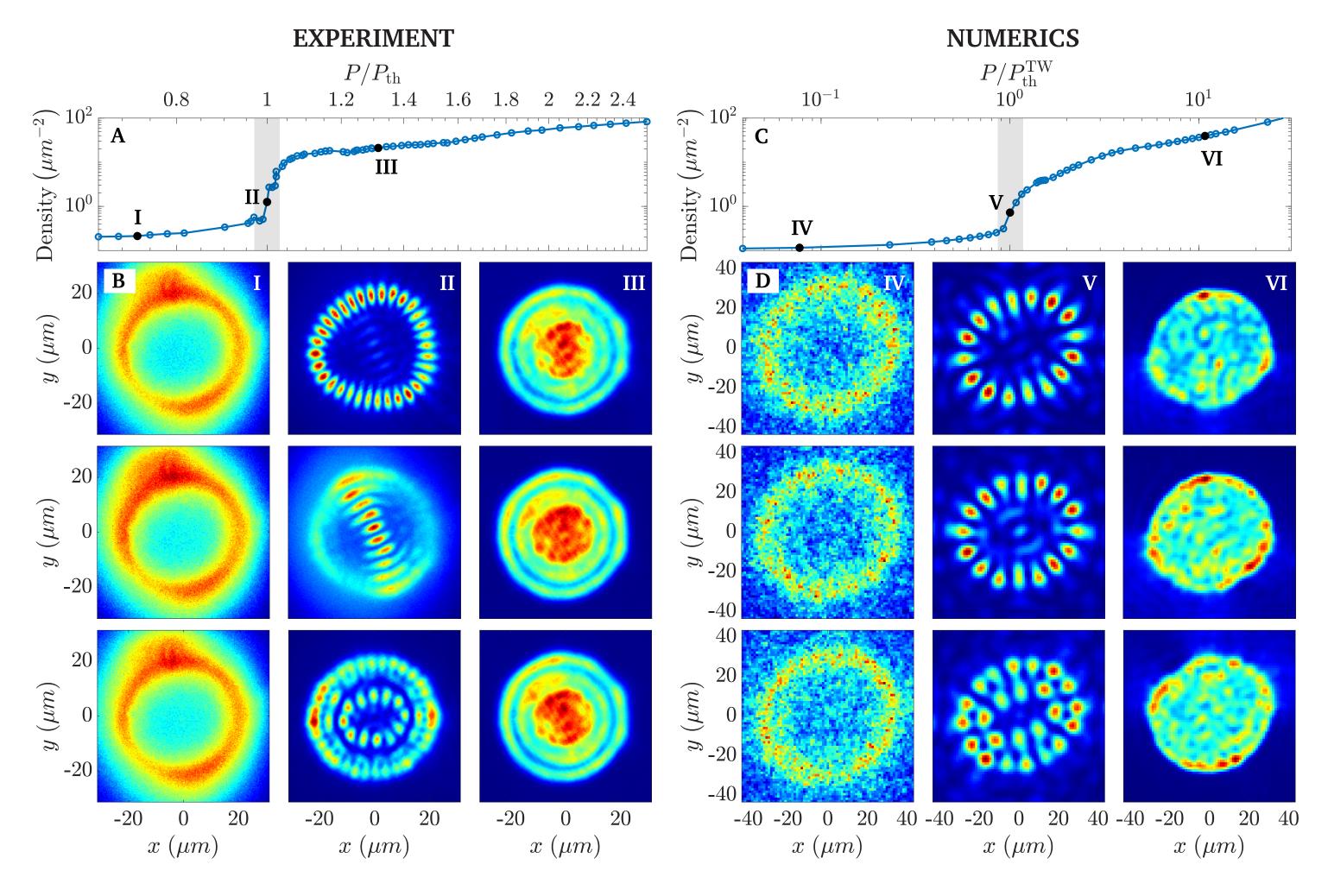


$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\nabla^2}{2m}\psi(x,t) + V(x)\psi(x,t) + g|\psi(x,t)|^2 + g_R n_R(x,t)\psi(x,t) + \frac{i}{2}\{R[n_R(x,t)] - \gamma\}\psi(x,t) + \sqrt{\frac{R+\gamma}{4\Delta x}}\xi(x,t)$$

Shaping Hermitian and non-Hermitian terms → non-Hermitian physics, e.g. exeptional points

E. Estrecho et al. Nature **526**, 554 (2020)

Simulations vs experiment



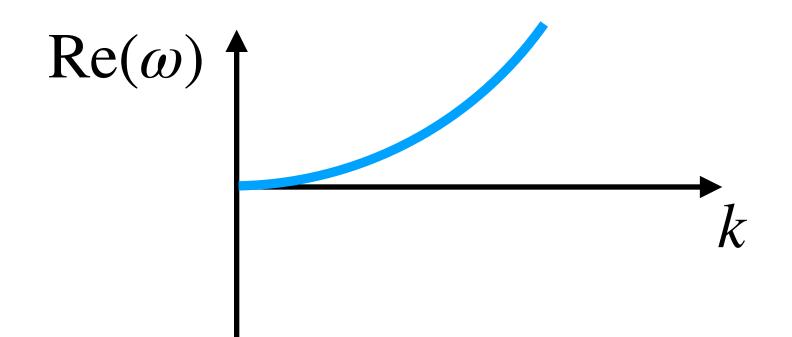
H. Alnatah et al. Science advances **10**, 6762 (2024)

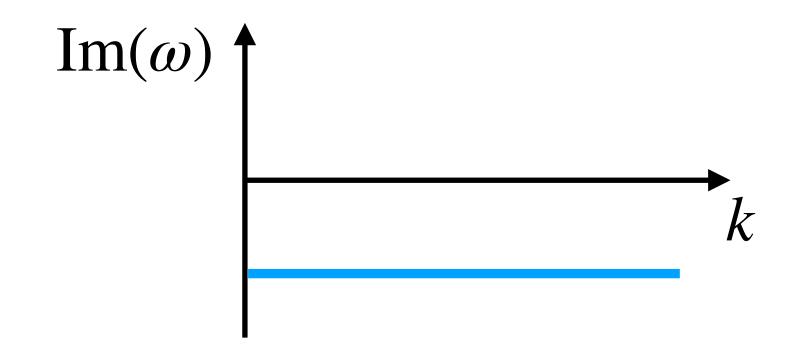
Bogoliubov excitation spectrum

$$\psi = e^{-i\omega_0 t} \left(\psi_0 + u_k e^{-i\omega_k t + ikx} + v_k e^{i\omega t - ikx} \right)$$

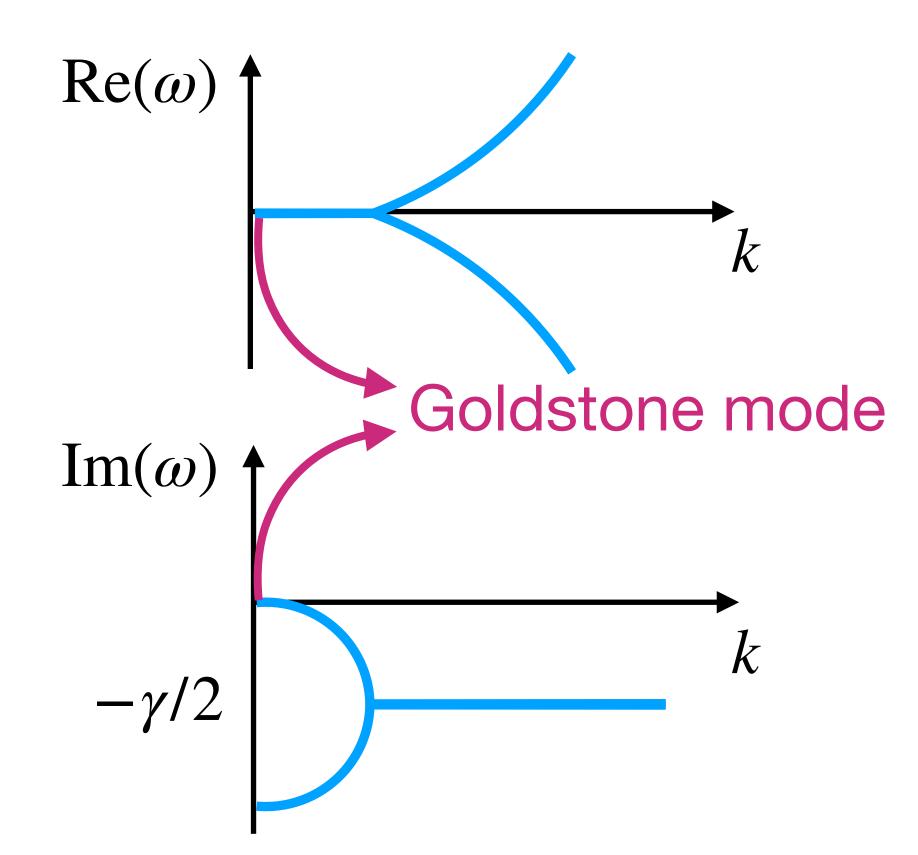
linearized eqs. of mot. in u_k and v_k

Empty cavity





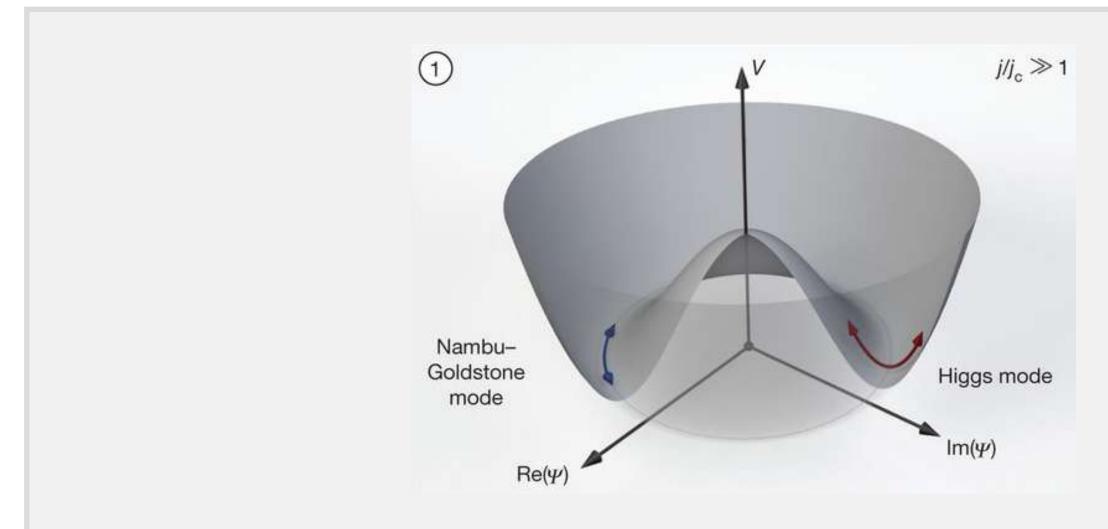
Above threshold



Bogoliubov excitation spectrum

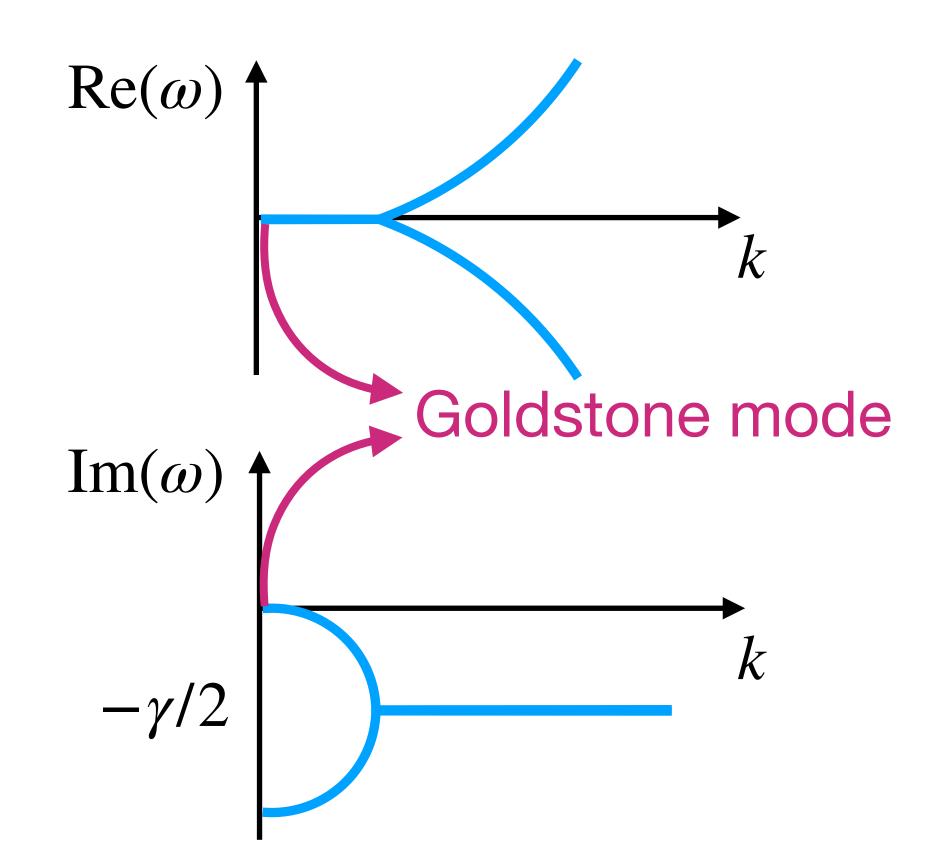
$$\psi = e^{-i\omega_0 t} \left(\psi_0 + u_k e^{-i\omega_k t + ikx} + v_k e^{i\omega t - ikx} \right)$$

linearized eqs. of mot. in u_k and v_k

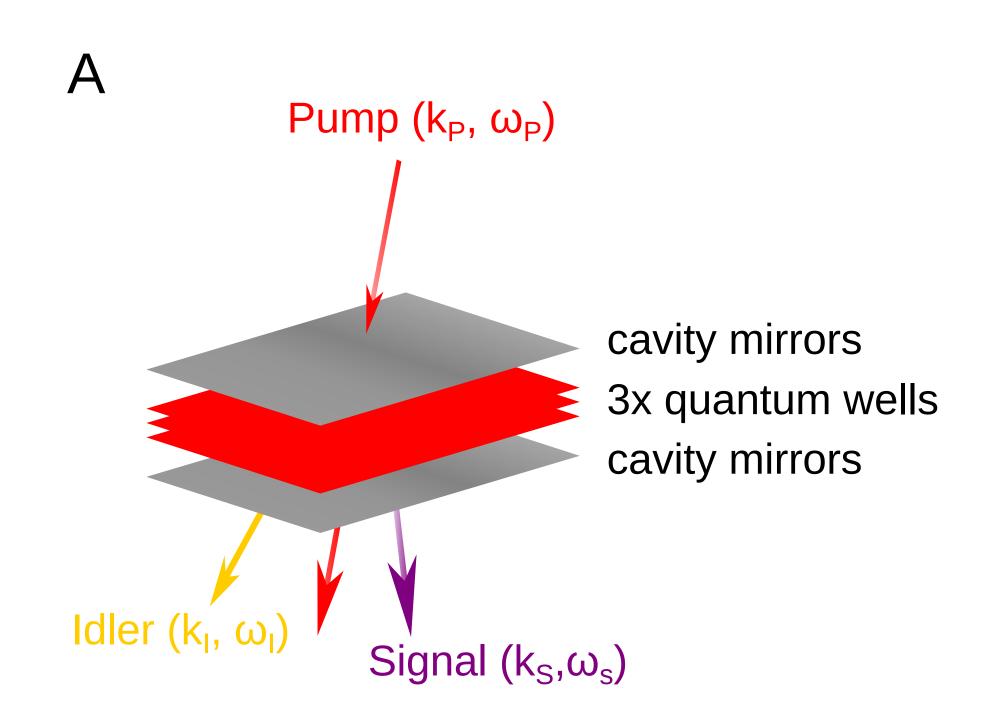


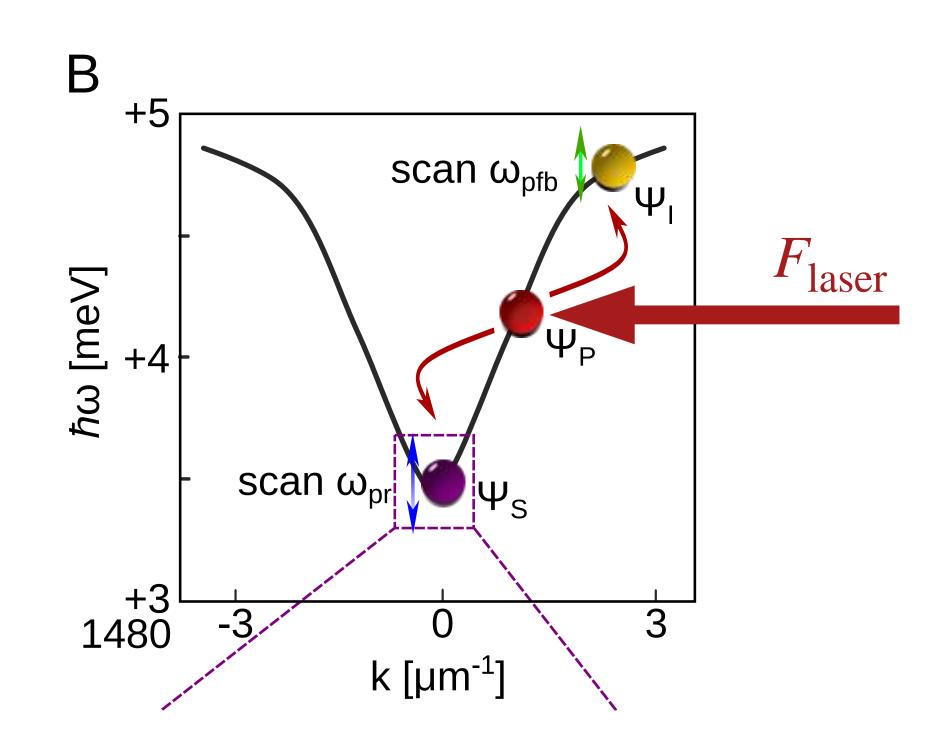
$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\nabla^2}{2m}\psi(x,t) + g|\psi(x,t)|^2 + g_R n_R(x,t)\psi(x,t)$$
$$+\frac{i}{2}\{R[n_R(x,t)] - \gamma\}\psi(x,t) + \sqrt{\frac{R+\gamma}{4\Delta x}}\xi(x,t)$$

Above threshold



Goldstone mode in polariton OPO

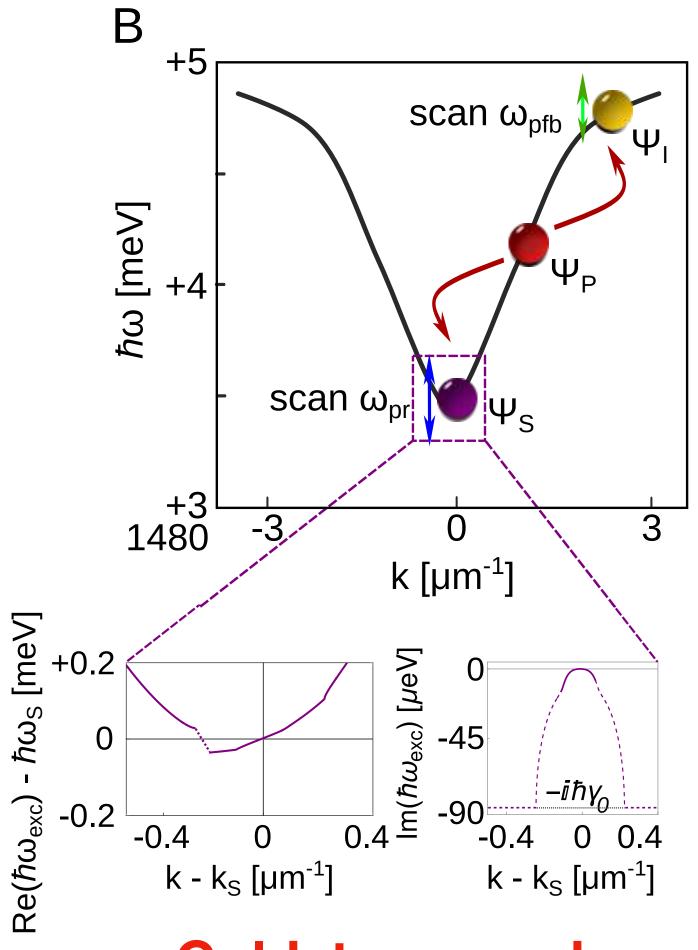




$$i\hbar\frac{\partial\psi(x)}{\partial t} = -\frac{\hbar^2\nabla^2}{2m}\psi(x) + V(x)\psi(x) + g|\psi(x)|^2\psi(x) - \frac{i}{2}\gamma\psi(x) + F_{\text{Laser}}e^{ik_Lx - i\omega_Lt}$$

F. Claude et al. Nature Physics 21, 924 (2025).

OPO excitation spectrum



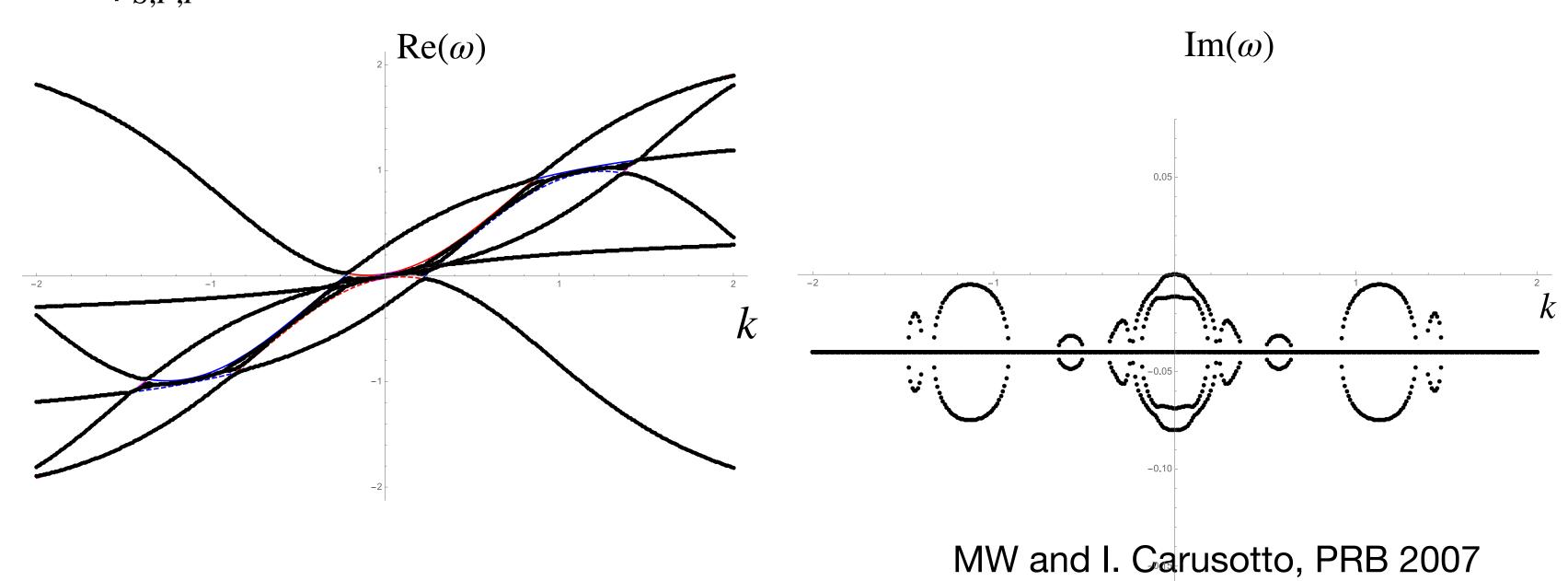
Goldstone mode

$$i\hbar\frac{\partial\psi(x)}{\partial t} = -\frac{\hbar^2\nabla^2}{2m}\psi(x) + V(x)\psi(x) + g|\psi(x)|^2\psi(x) - \frac{i}{2}\gamma\psi(x) + F_{\text{Laser}}e^{ik_Lx - i\omega_Lt}$$

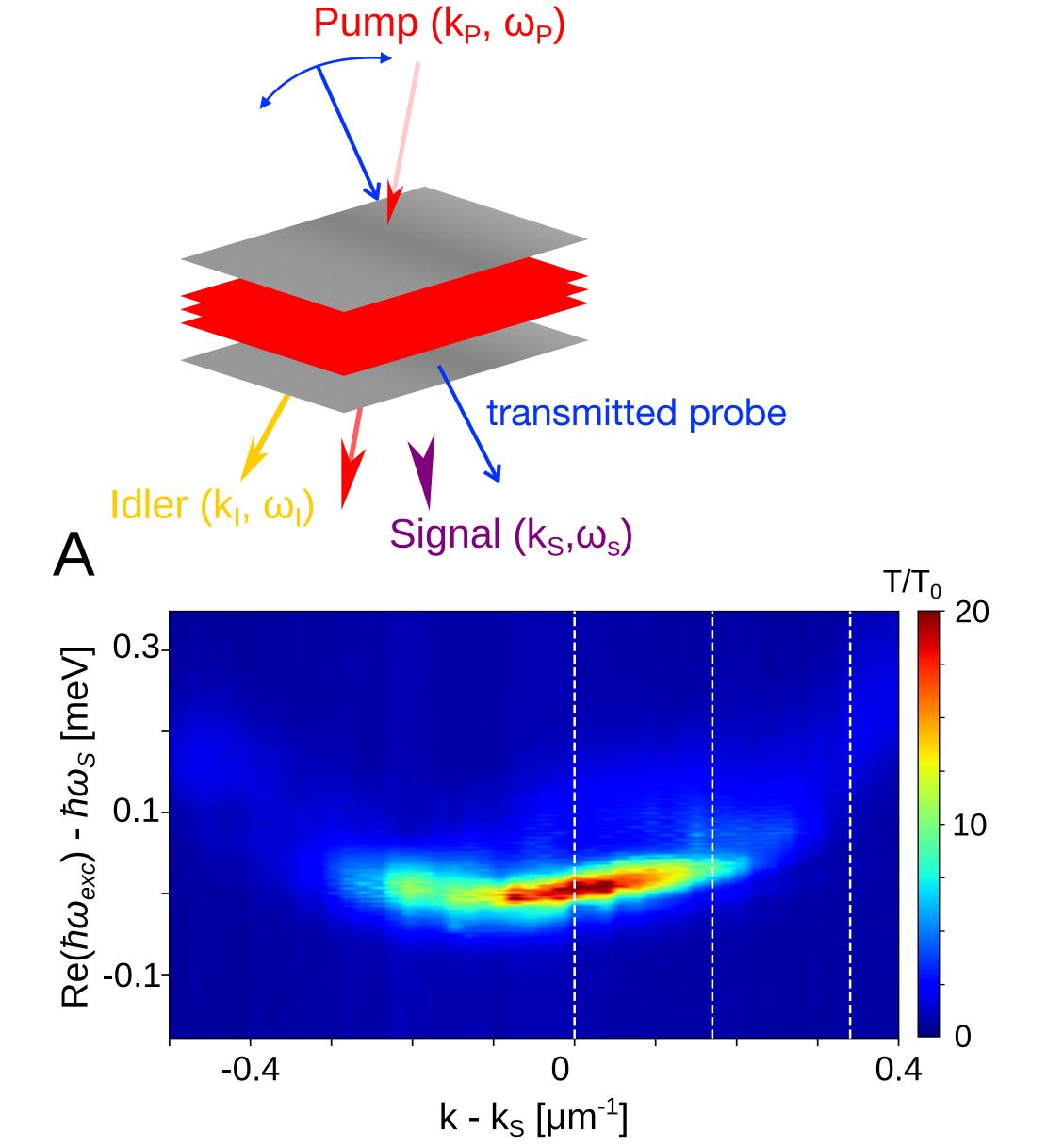
$$\psi(x) = \psi_S e^{ik_S x - i\omega_S t} + \psi_P e^{ik_P x - i\omega_L t} + \psi_I e^{ik_I x - i\omega_I t}$$
 U(1) symmetry: $\psi_{S,i} \rightarrow e^{\pm i\theta} \psi_{S,i}$

$$\psi_S = \psi_S^{(0)} + \delta \psi_S(x, t), \ \psi_P = \psi_P^{(0)} + \delta \psi_P(x, t), \ \psi_I = \psi_P^{(0)} + \delta \psi_I(x, t)$$

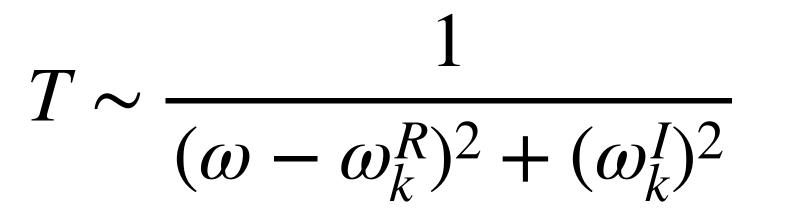
 $\delta\psi_{S,P,I}$ are complex \Rightarrow 6 excitation branches

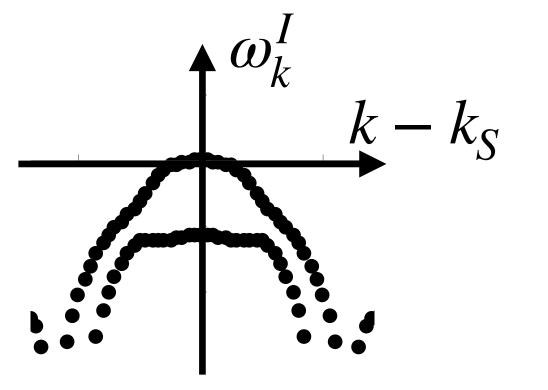


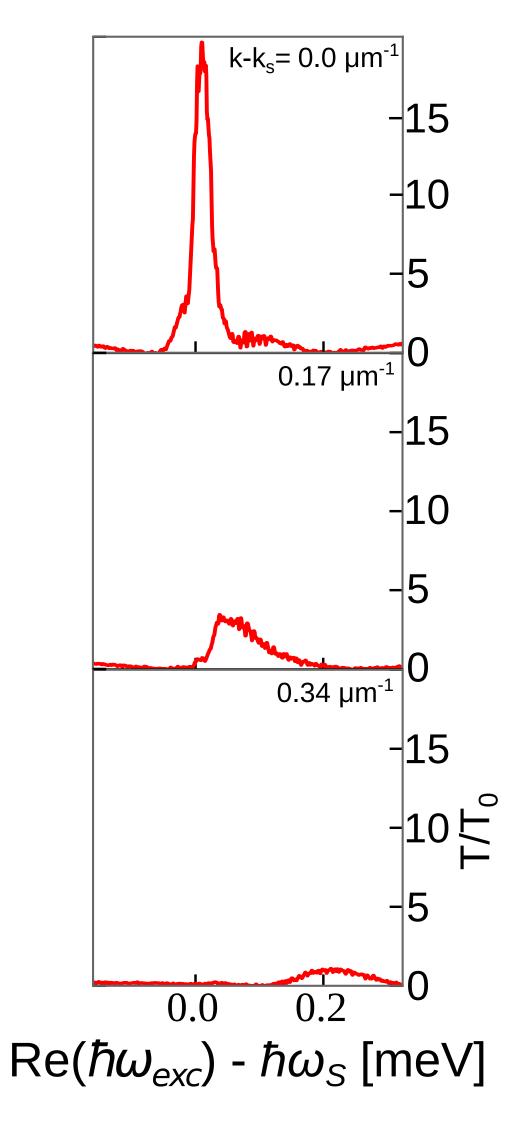
Goldstone measurement



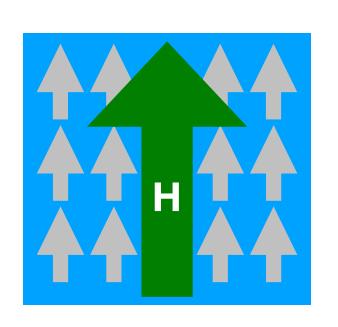
A

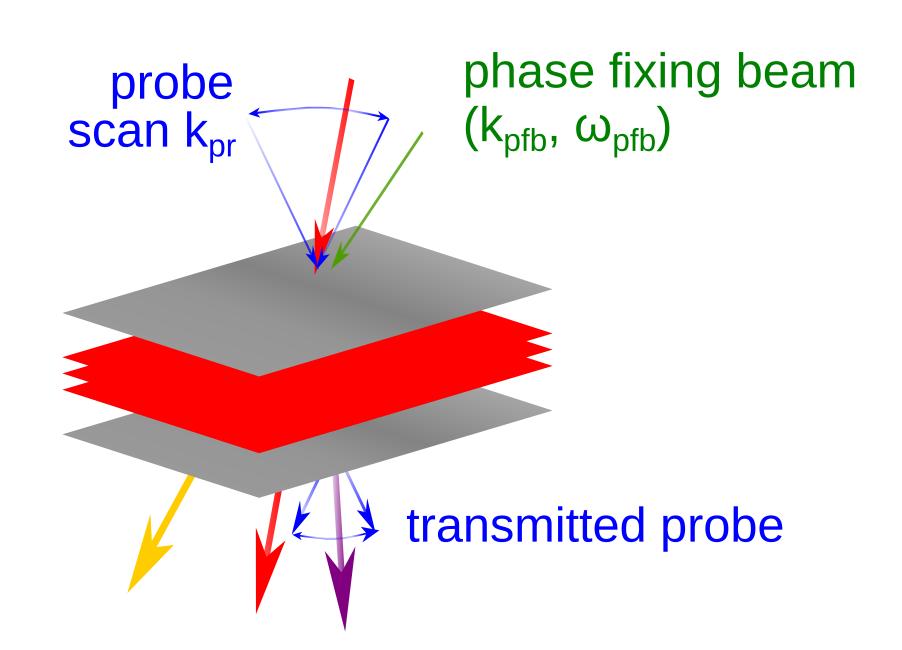


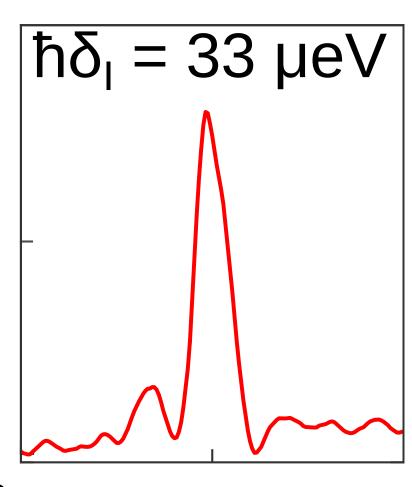


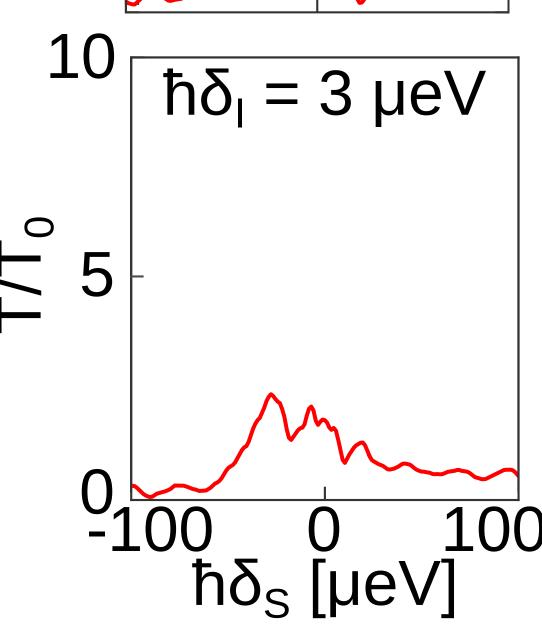


Destroying the Goldstone mode









Spatiotemporal coherence in quantum fluids of light

Michiel Wouters

Outline

Lecture 1

- Stochastic classical field models for polariton and photon condensation
- Excitation spectrum and Goldstone mode

Lecture 2

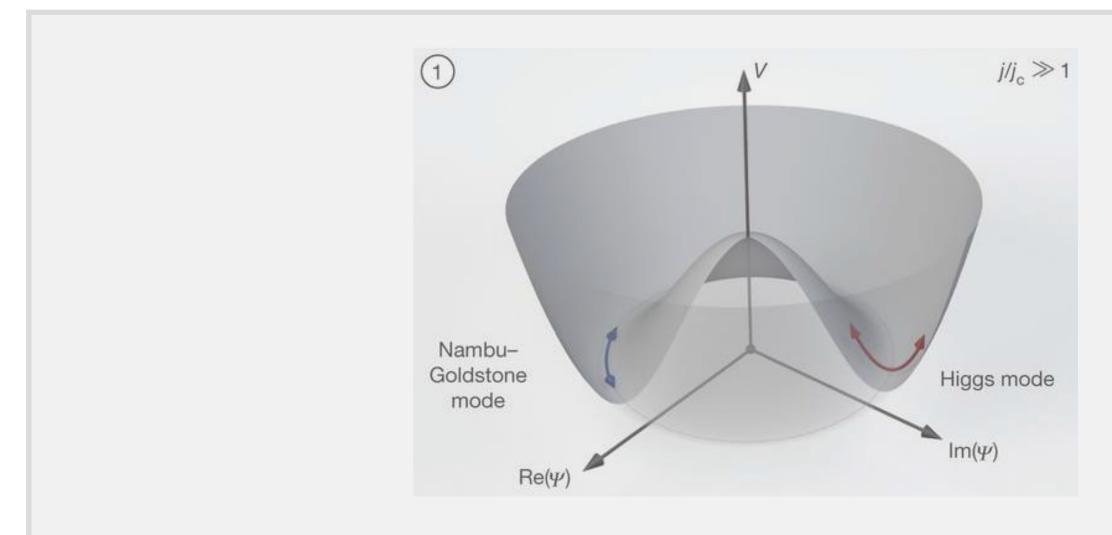
- Scaling properties of the phase fluctuations
- Experimental observation of KPZ scaling

- I. Carusotto and C. Ciuti RMP 2013,
- I. Carusotto, J. Bloch and MW. Nat. Phys. Rev. 2022

Bogoliubov excitation spectrum

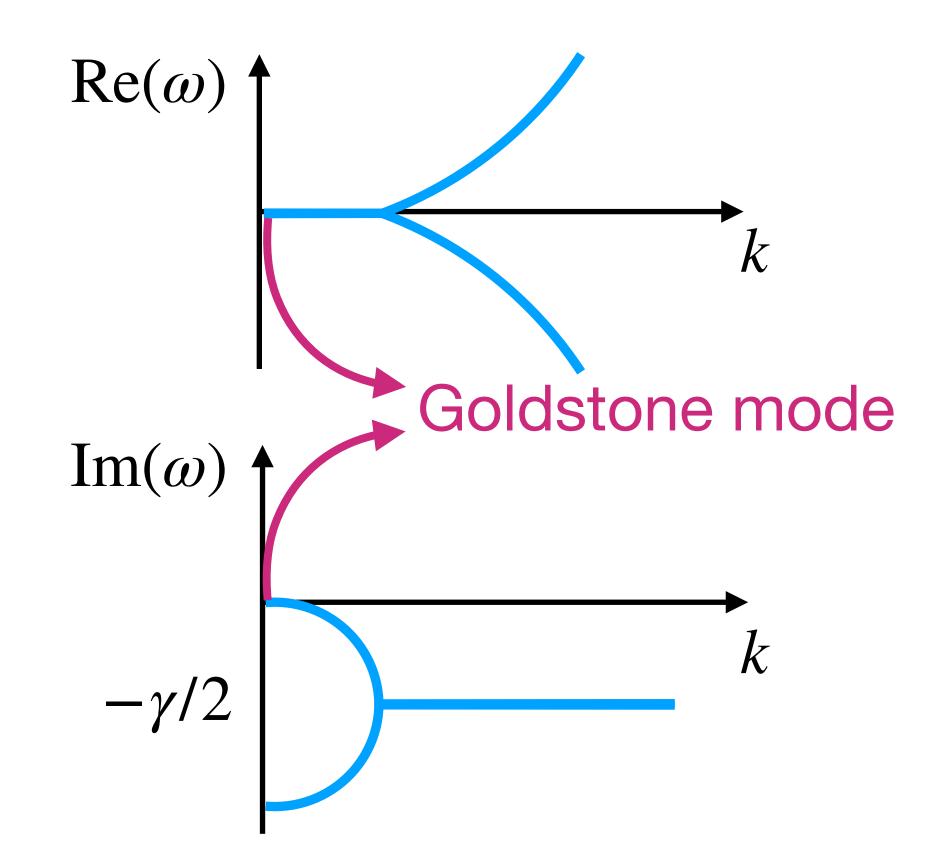
$$\psi = e^{-i\omega_0 t} \left(\psi_0 + u_k e^{-i\omega_k t + ikx} + v_k e^{i\omega t - ikx} \right)$$

linearized eqs. of mot. in u_k and v_k

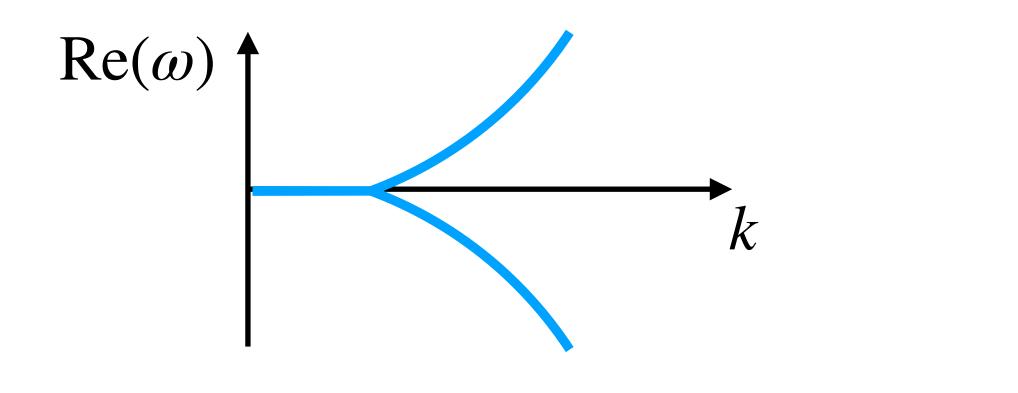


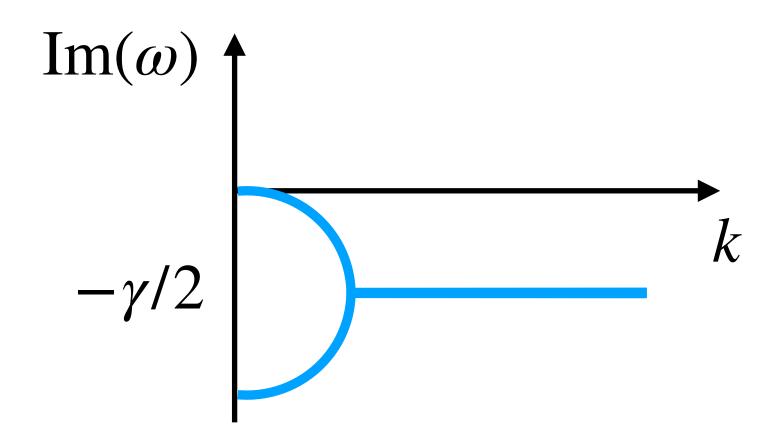
$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\nabla^2}{2m}\psi(x,t) + g|\psi(x,t)|^2 + g_R n_R(x,t)\psi(x,t)$$
$$+\frac{i}{2}\{R[n_R(x,t)] - \gamma\}\psi(x,t) + \sqrt{\frac{R+\gamma}{4\Delta x}}\xi(x,t)$$

Above threshold



Stochastic phase dynamics





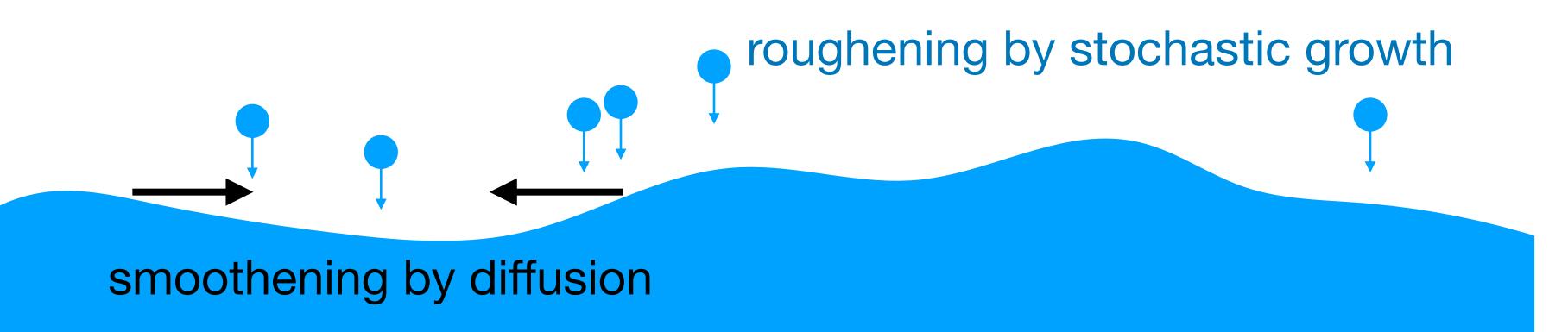
$$d\theta(x,t) = a \nabla^2 \theta(x,t) dt + \sqrt{\frac{R}{2n\Delta x}} dW_{\theta}(x)$$

noisy diffusion equation

Stochastic phase dynamics

$$d\theta(x,t) = a \nabla^2 \theta(x,t) \ dt + \sqrt{\frac{R}{2n\Delta x}} dW_{\theta}(x)$$
 noisy diffusion equation

(compact) Edwards-Wilkinson (EW) model for stochastic interface growth



Phase correlations in EW (Bog.) approx.

The Langevin equation

$$d\theta(x,t) = a \nabla^2 \theta(x,t) dt + \sqrt{\frac{R}{2n\Delta x}} dW_{\theta}(x)$$

reaches in the steady state the equilibrium distribution of

$$H[\theta] = \int d^D x \, \frac{a}{2} (\nabla \theta)^2$$
 at temperature $T = \sqrt{\frac{R}{4na}}$

⇒ The same correlation functions as in equilibrium systems

1D Phase correlator in Bogoliubov (EW) approx.

equal time

$$\langle (\theta(x,t) - \theta(0,t))^2 \rangle \sim |x|$$

$$\Rightarrow \langle \psi^*(x,t)\psi(0,t)\rangle \approx ne^{-\frac{1}{2}\langle [\theta(x,t)-\theta(0,t)]^2\rangle} \sim e^{-|x|/\ell_c}$$

equal space

$$\langle (\theta(x,t) - \theta(x,0))^2 \rangle \sim \sqrt{|t|}$$

$$\Rightarrow \langle \psi^*(x,t)\psi(x,0)\rangle \approx ne^{-\frac{1}{2}\langle [\theta(x,t)-\theta(x,0)]^2\rangle} \sim e^{-\sqrt{|t|/\tau_c}}$$

Spatiotemporal scaling

$$C_{\theta}(x,t) = \langle [\theta(x,t) - \theta(x + \Delta x, t + \Delta t)]^2 \rangle \sim \Delta t^{2\beta} F\left(y_0 \frac{\Delta x}{\Delta t^{1/z}}\right)$$

 α : roughening exponent

z: dynamical exponent

 $\beta = \alpha/z$: growth exponent

EW:
$$\alpha = \frac{2 - d}{2}$$

$$\beta = \frac{2 - d}{4}$$

$$z = 2$$

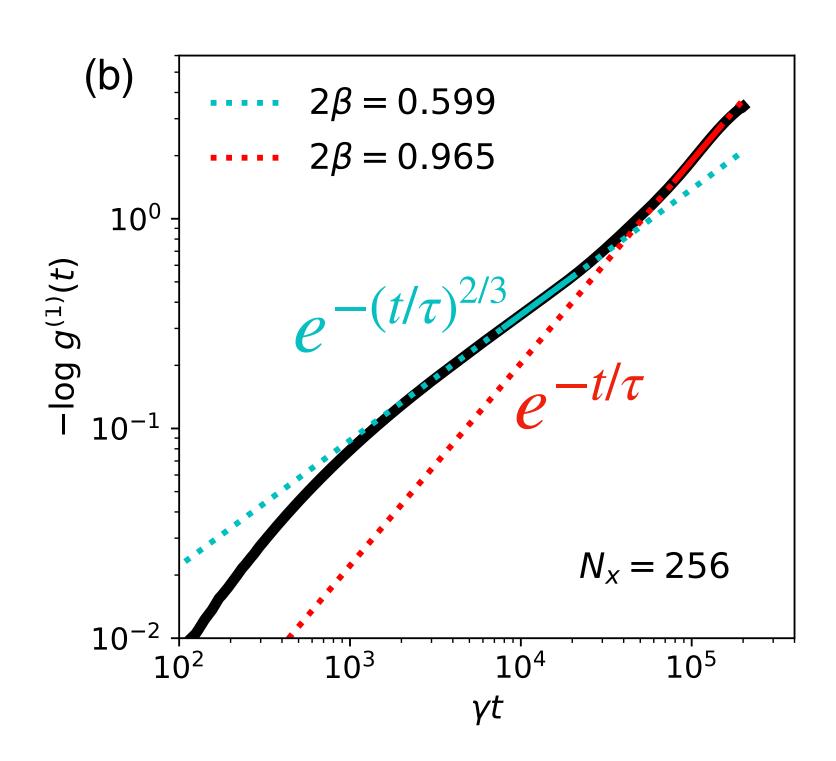
with
$$F(y \to 0) \to c^{te}$$

$$F(y \to \infty) \sim |y|^{2\alpha}$$

$$C_{\theta} \sim \Delta x^{2\alpha}$$

$$C_{\theta} \sim \Delta t^{2\beta}$$

Long times: Schawlow-Townes diffusion



Finite system: mode quantization \to crossover to 0D system at $t\gg \Delta\epsilon$

Kardar-Parisi-Zhang

EW vertical interface growth

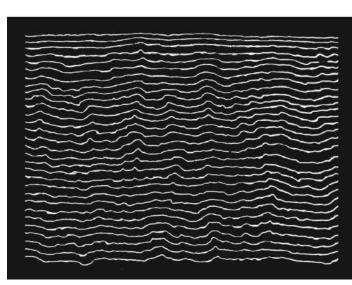
KPZ growth normal to surface

$$d\theta = \left[a \nabla^2 \theta + \lambda (\nabla \theta)^2\right] dt + \sqrt{\frac{R}{2n\Delta x}} dW_{\theta}$$
nonequilibrium, increases fluctuations

M. Kardar et al. PRL **56**, 889 (1986).

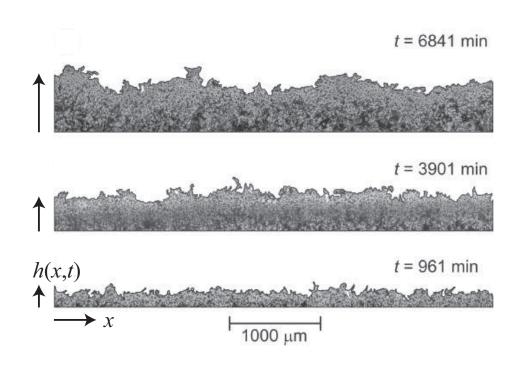
KPZ examples

Paper combustion

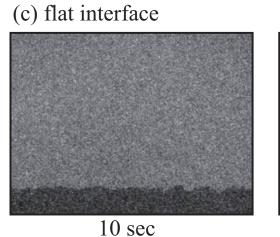


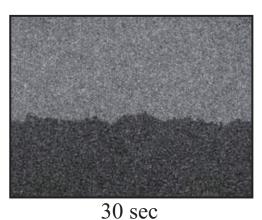
M. Myllys et al. PRE 64, 036101 (2001)

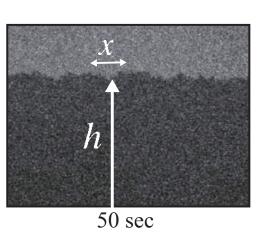
Cancer cells



Liquid crystal interface

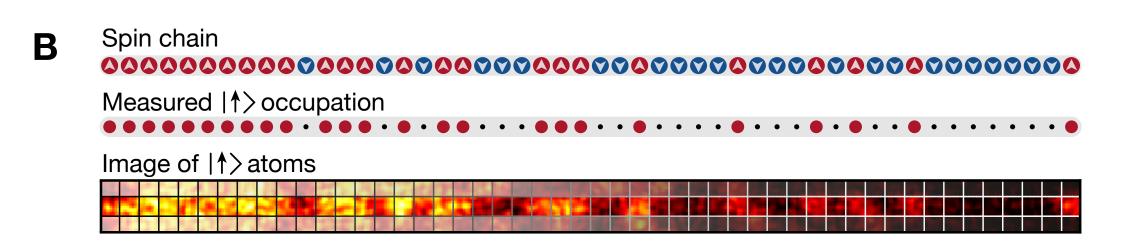






K. A. Takeuchi, M. Sano, J. Stat. Phys. 147 (2012) 853

Ultracold atoms



Phase nonlinearity in noneq. quantum fluids

Josephson: nonlinear contribution to phase dynamics from kinetic energy:

$$d\theta(x,t) = \left[a\nabla^2\theta(x,t) - \frac{1}{2m}(\nabla\theta)^2\right]dt + \sqrt{\frac{R}{2n\Delta x}}dW_{\theta}(x)$$

Spatiotemporal coherence at long distances/times

$$\langle \psi^*(x,t)\psi(x',t')\rangle \approx ne^{-\frac{1}{2}\langle [\theta(x,t)-\theta(x',t')]^2\rangle}$$

has KPZ scaling properties

1DKPZ

$$\log\left[g^{(1)}(\Delta x, \Delta t)\right] \sim \langle [\theta(x, t) - \theta(x + \Delta x, t + \Delta t)]^2 \rangle \sim \Delta t^{2\beta} F_{KPZ} \left(y_0 \frac{\Delta x}{\Delta t^{1/z}}\right)$$

$$\log \left[g^{(1)}(\Delta x, 0) \right] \sim \Delta x^{2\alpha} = \Delta x$$
$$\log \left[g^{(1)}(0, \Delta t) \right] \sim \Delta t^{2\beta} = \Delta t^{2/3}$$

KPZ:
$$\alpha = 1/2$$
 $\beta = 1/3$
 $z = 3/2$

EW:
$$\alpha = 1/2$$

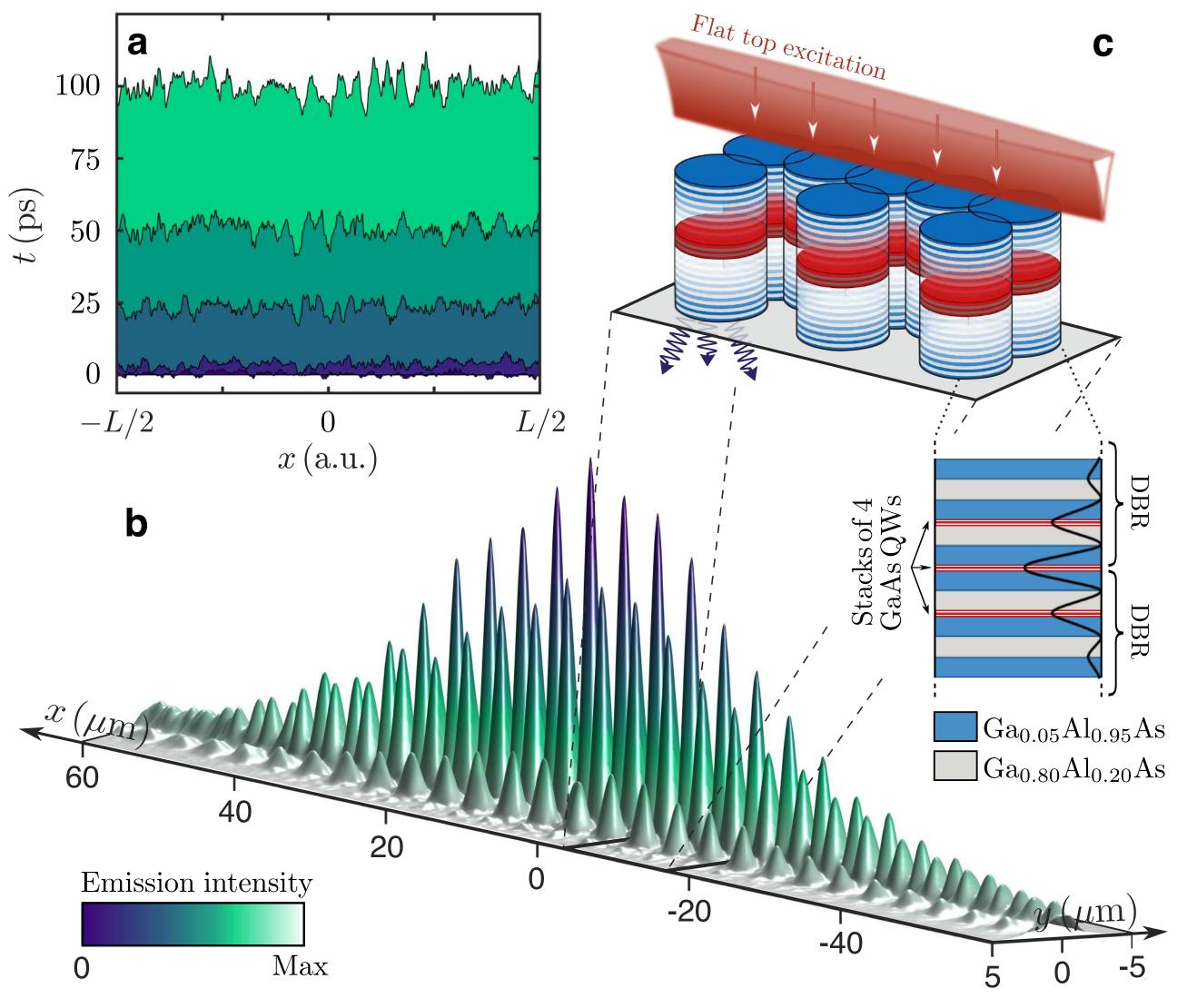
$$\beta = 1/4$$

$$z = 2$$

 $\alpha + z = 2$ from Galilean invariance

M. Prähofer and H. Spohn, J. Stat. Phys. **154**, 1191–1227 (2014).

experiment KPZ 1D polaritons



Q. Fontaine et al.

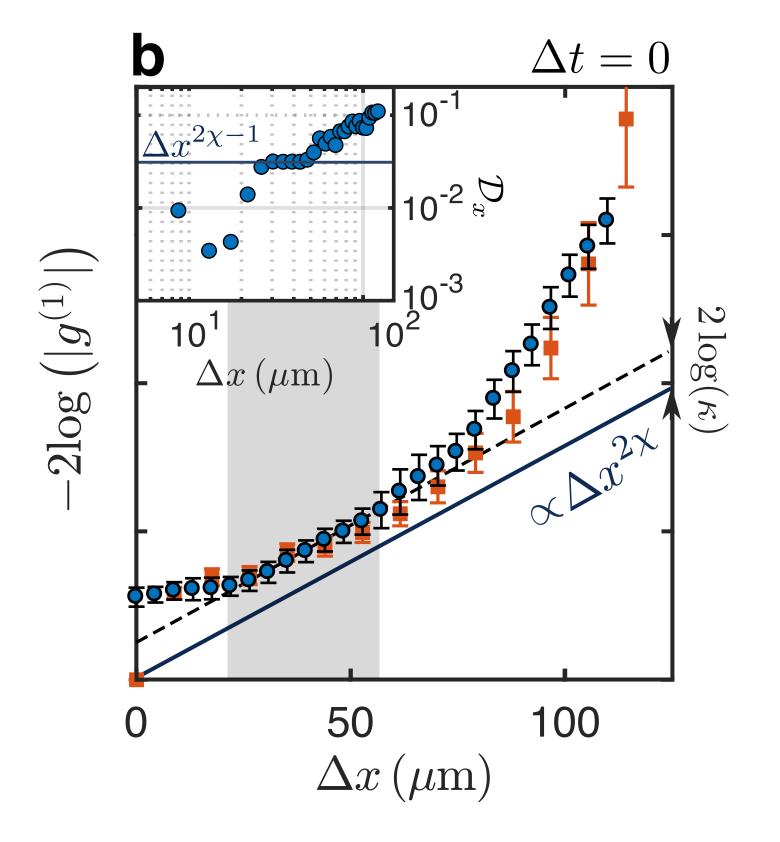
Nature 608, 687 (2022)

KPZ scaling

$$g^{(1)}(\Delta x, \Delta t) \approx e^{-\frac{1}{2}\langle [\theta(x + \Delta x, t + \Delta t) - \theta(x, t)]^2\rangle}$$

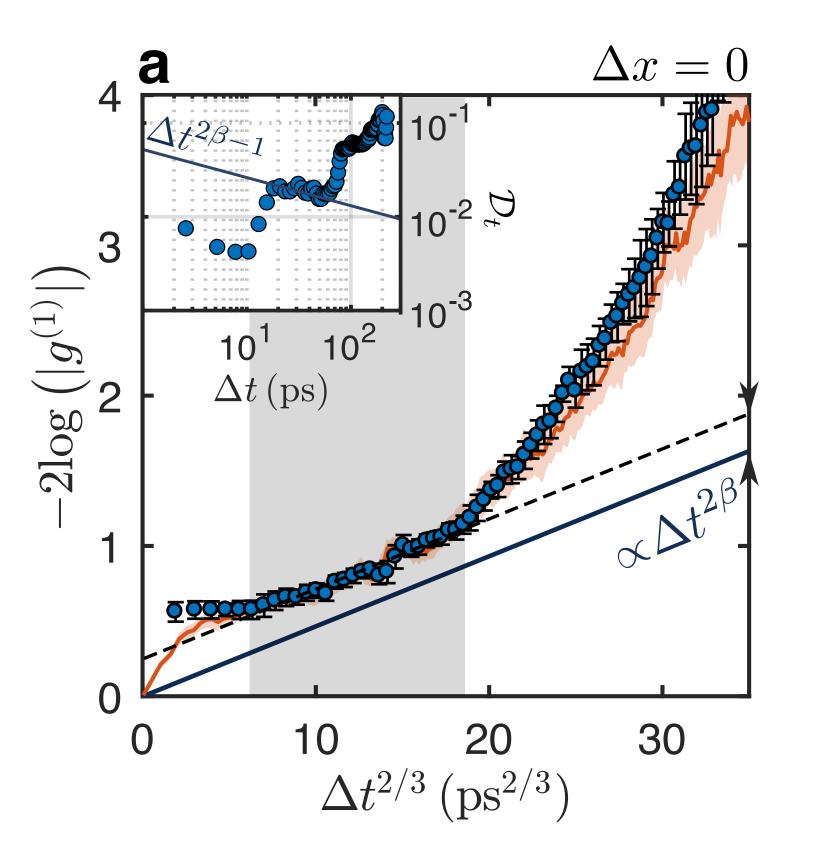
Spatial scaling (same as Bogoliubov)

$$g^{(1)}(\Delta x, \Delta t = 0) \sim e^{-|\Delta x|/\ell}$$



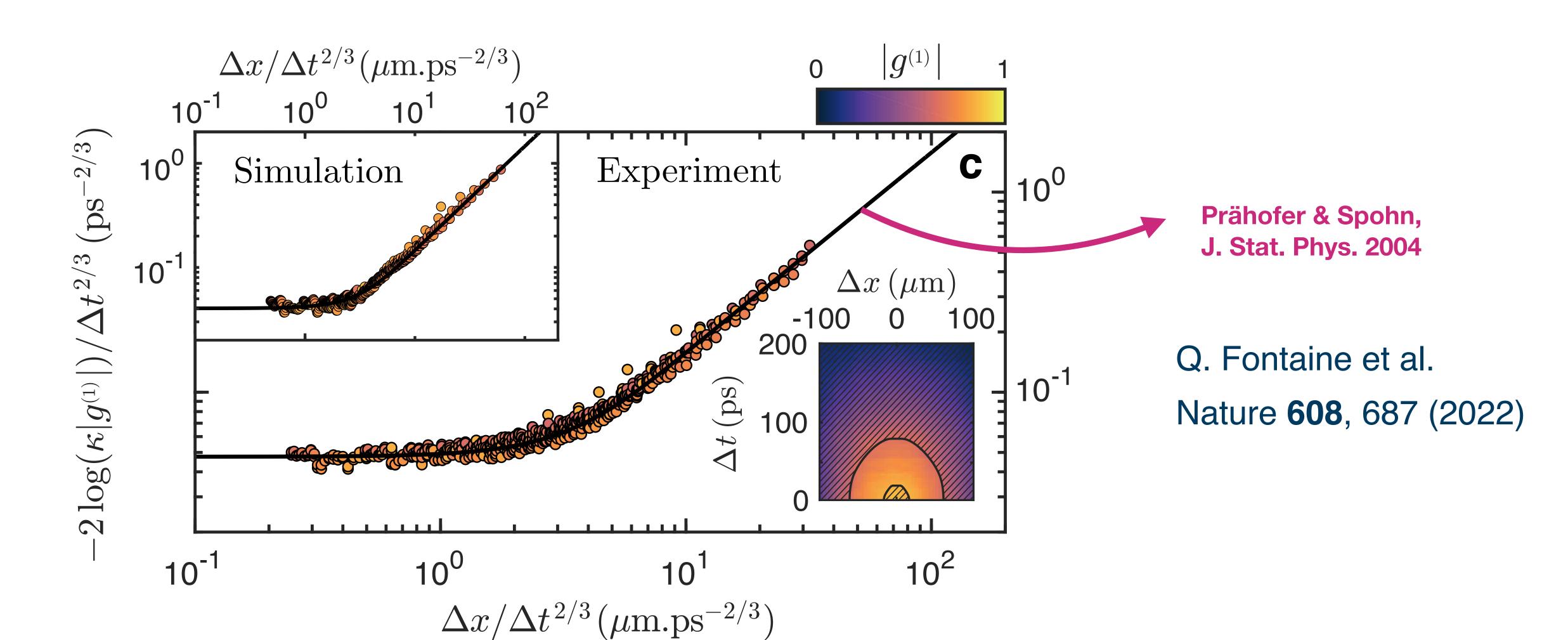
Temporal scaling

$$g^{(1)}(\Delta x = 0, \Delta t) \sim e^{-|\Delta t/\tau|^{2/3}}$$



KPZ scaling

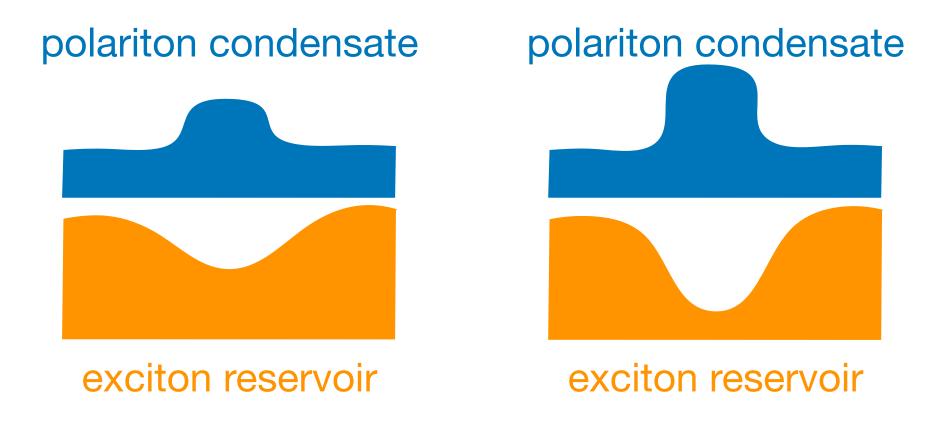
 $-2\log \left[g^{(1)}(\Delta x, \Delta t)\right] / |\Delta t|^{2/3} \sim F(\Delta x / \Delta t^{2/3})$

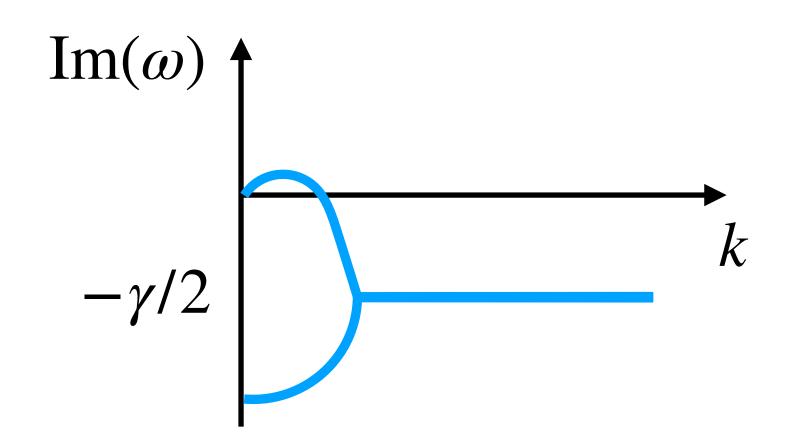


Some more details...

Modulational instability

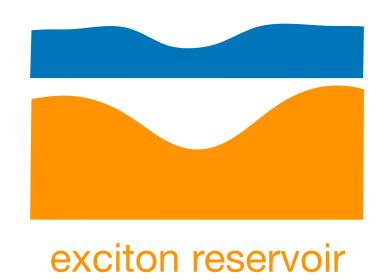
Instability mechanism from interactions with reservoir

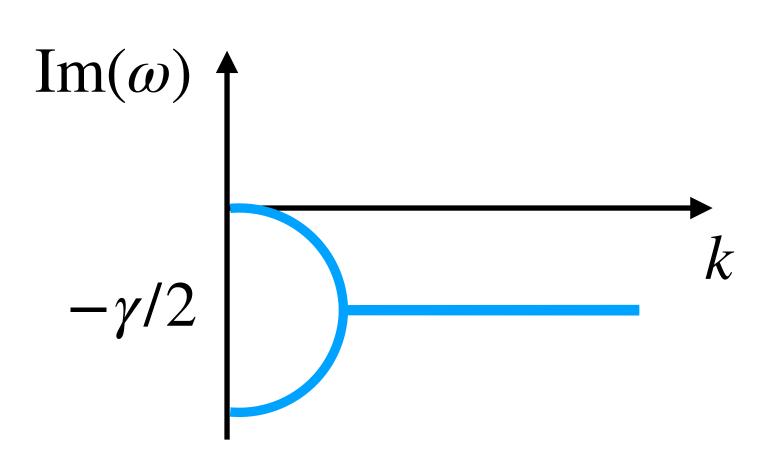




Avoided with negative mass states

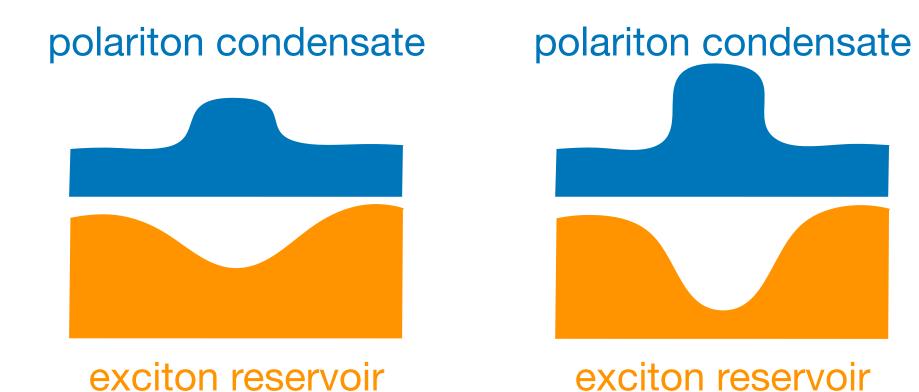
polariton condensate





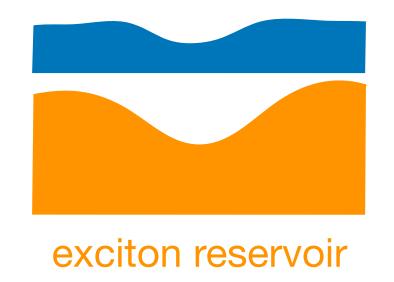
Modulational instability

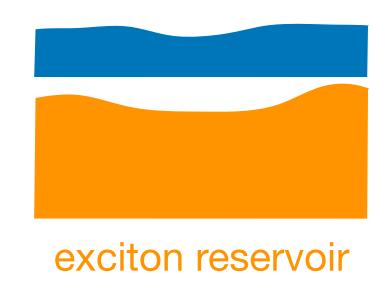
Instability mechanism from interactions with reservoir

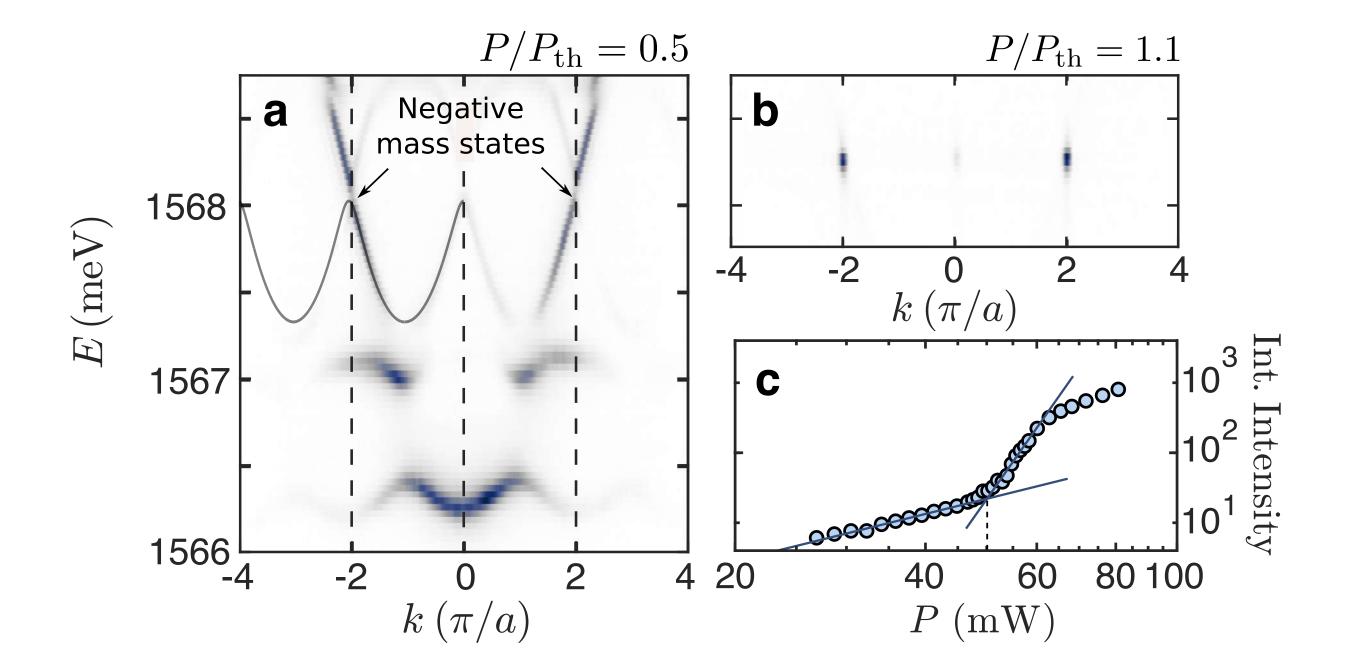


Avoided with negative mass states

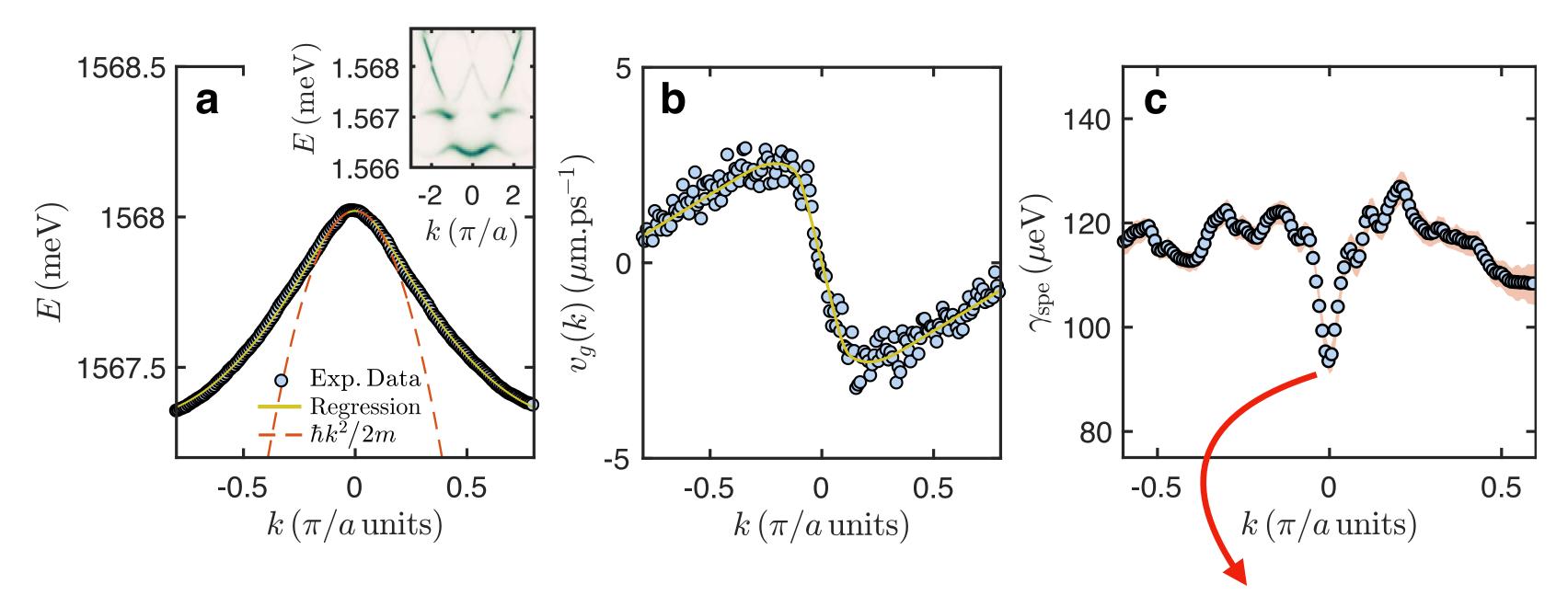
polariton condensate







k-dependent linewidth



Longer life time for condensate mode

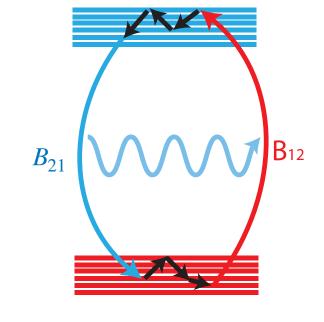
$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\nabla^2}{2m}\psi(x,t) + \frac{i\gamma_2}{2}\nabla^2\psi + \frac{i}{2}\left\{R[n_R(x,t)] - \gamma\right\}\psi(x,t) + \sqrt{\frac{R+\gamma}{4\Delta x}}\xi(x,t)$$

increases diffusion coefficient in KPZ equation

cf. photon condensation model

$$i\frac{\partial\psi}{\partial t} = \frac{-\nabla^2}{2m}\psi + \frac{i}{2}\left(B_{21}(\omega)M_2 - B_{12}(\omega)M_1 - \gamma\right)\psi + \cdots$$

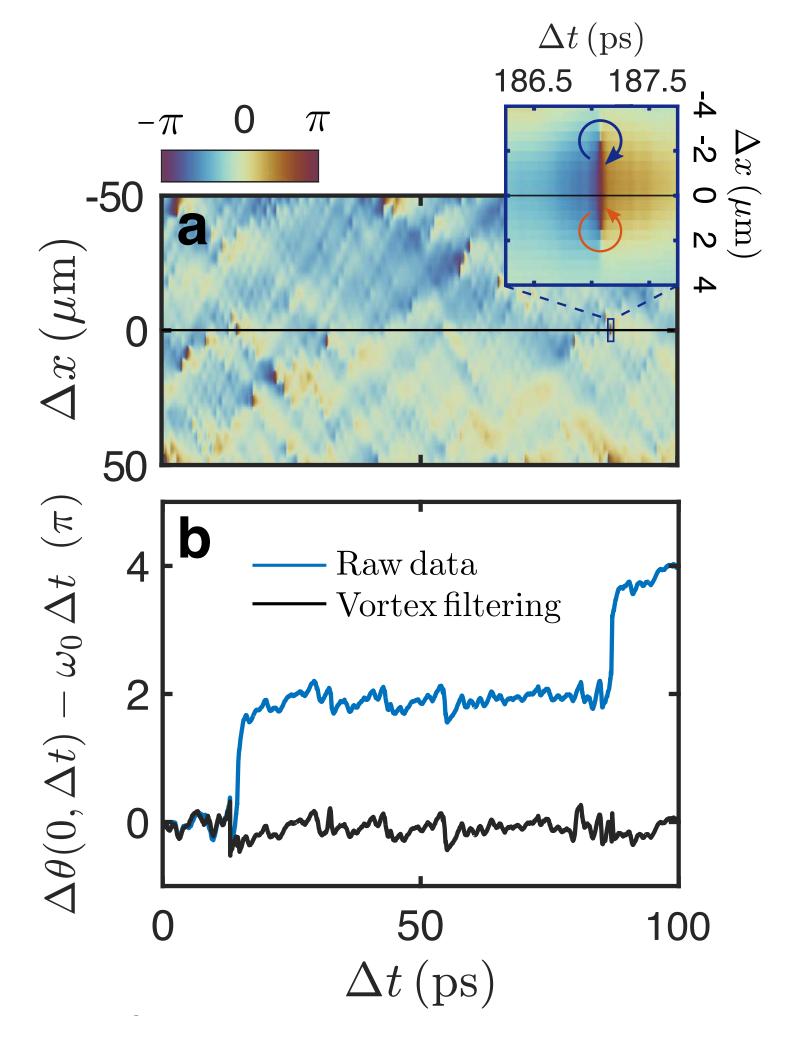
$$\frac{B_{12}(\omega)}{B_{21}(\omega)} = e^{\beta(\omega - \omega_0)} \approx e^{\beta(\omega_c - \omega_0)} [1 + \beta(\omega - \omega_c)] \rightarrow e^{\beta(\omega_c - \omega_0)} (1 + \beta i \frac{\partial}{\partial t})$$



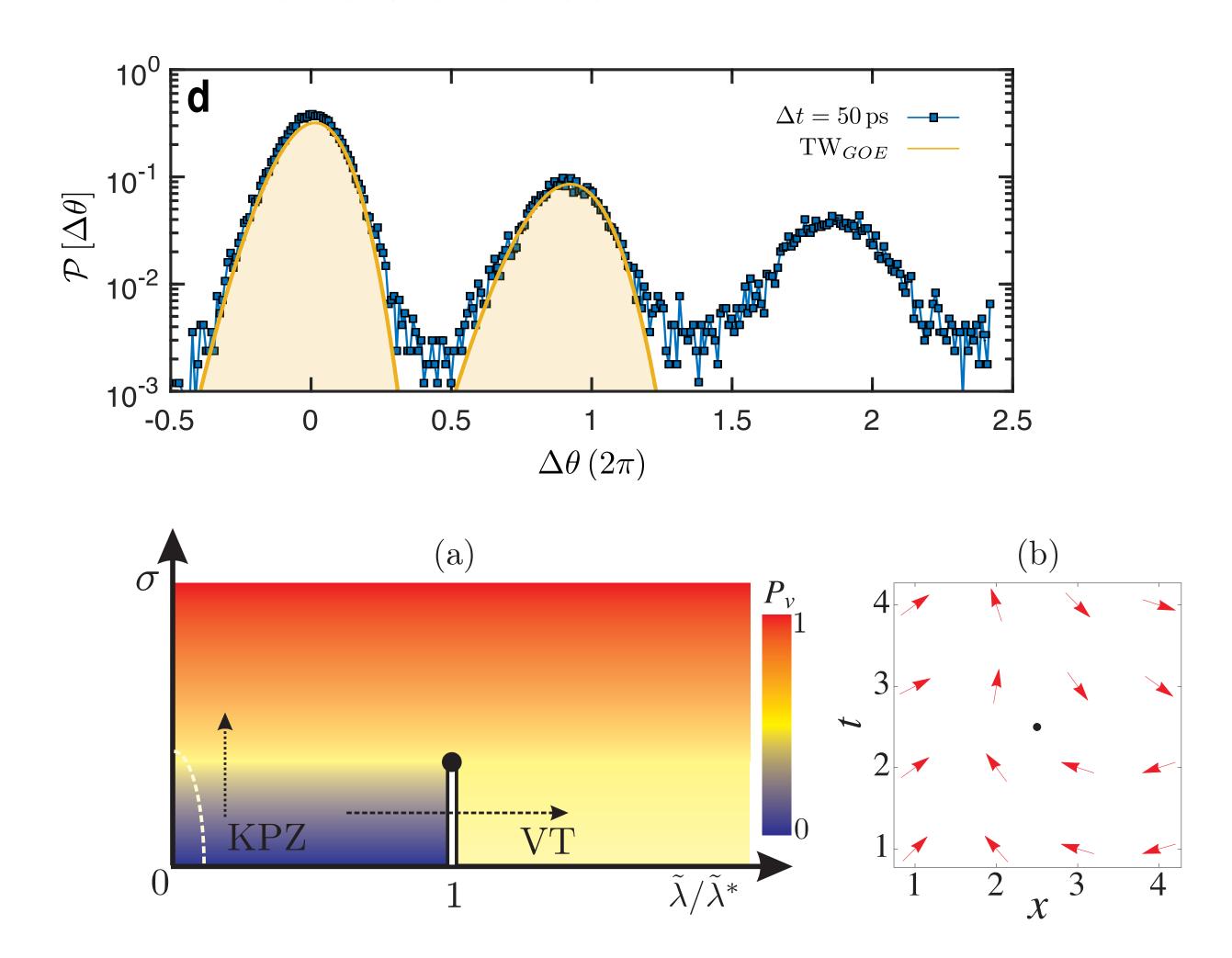
$$\operatorname{take} B_{21} = B_{21}^c$$
 and
$$B_{12}M_1 = B_{12}^c M_1 (1 + \beta i \frac{\partial}{\partial t}) = B_{12}^c M_1 + i\kappa \frac{\partial}{\partial t} \qquad \text{with} \quad \kappa = \frac{B_{12} M_1}{2k_B T}$$

$$i\frac{\partial\psi}{\partial t} = \frac{-\nabla^2}{2m}\psi - i\kappa\frac{-\nabla^2}{2m}\psi + \frac{i}{2}\left(B_{21}^cM_2 - B_{12}^cM_1 - \gamma\right)\psi + \cdots$$

phase slips (phase-time vortices)

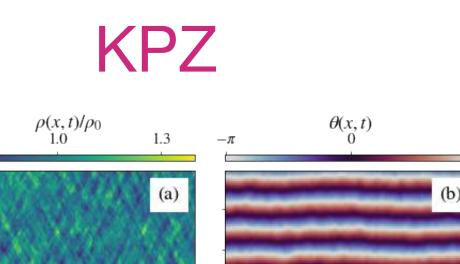


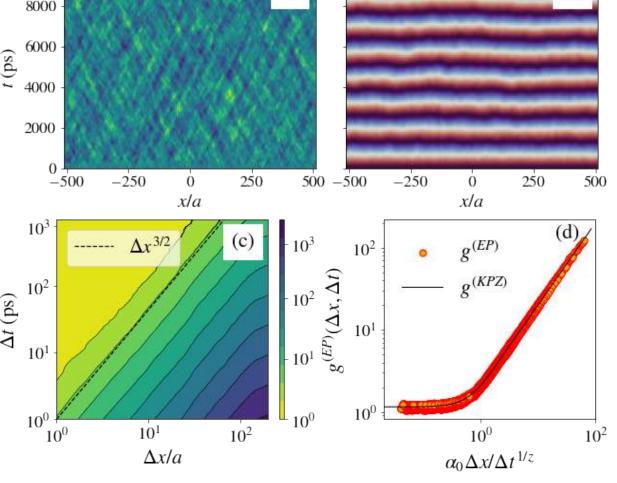
Phase statistics



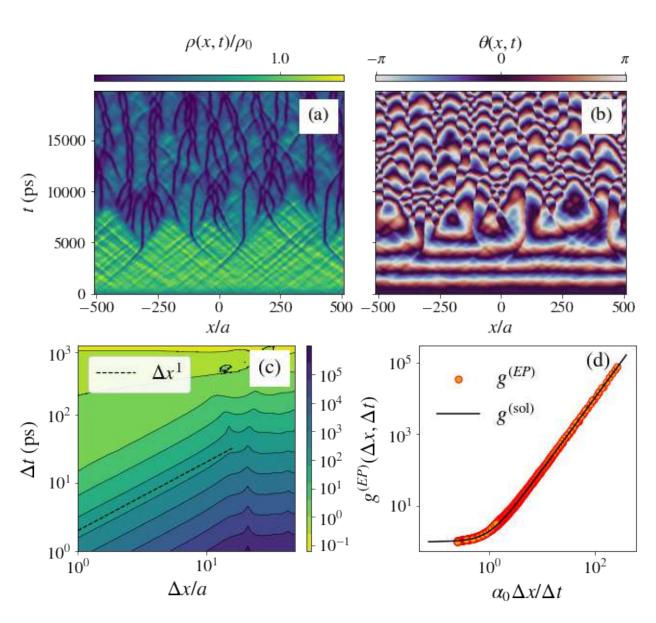
L. He et al. PRL 118 085301 (2017)

More complicated phase dynamics



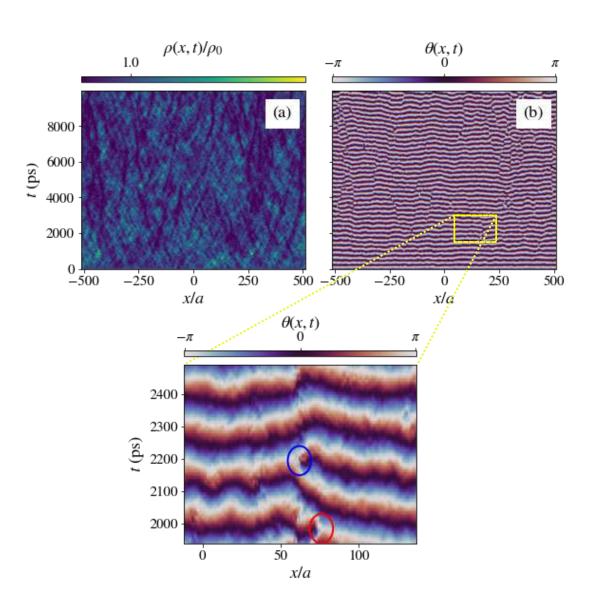


Solitons

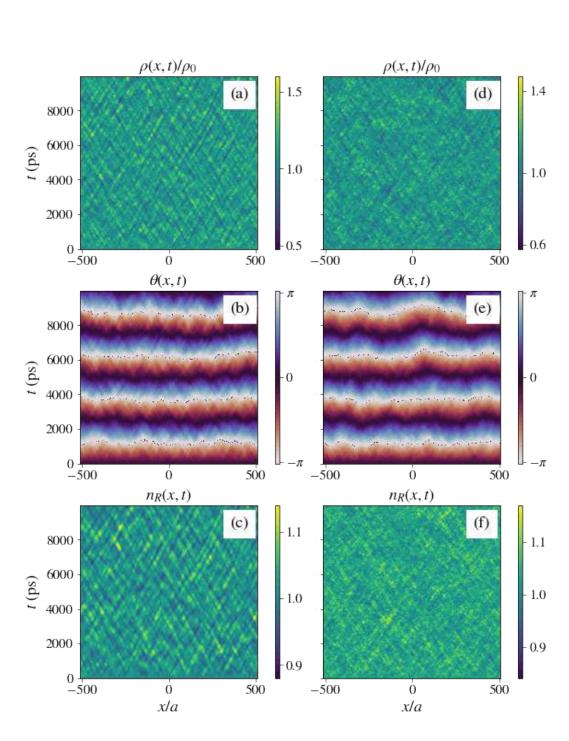


dyn. instability

Space-time vortices Reservoir textured



large noise



far from adiabatic

F. Vercesi et al, PRR 5 043062 (2023)

D

2D Phase correlator in EW (Bog.) approx.

equal time

$$\langle (\theta(x) - \theta(0))^2 \rangle \sim \ln|x|$$

$$\Rightarrow \langle \psi^*(x,t)\psi(0,t)\rangle \approx ne^{-\frac{1}{2}\langle [\theta(x,t)-\theta(0,t)]^2\rangle} \sim |x|^{-\alpha}$$

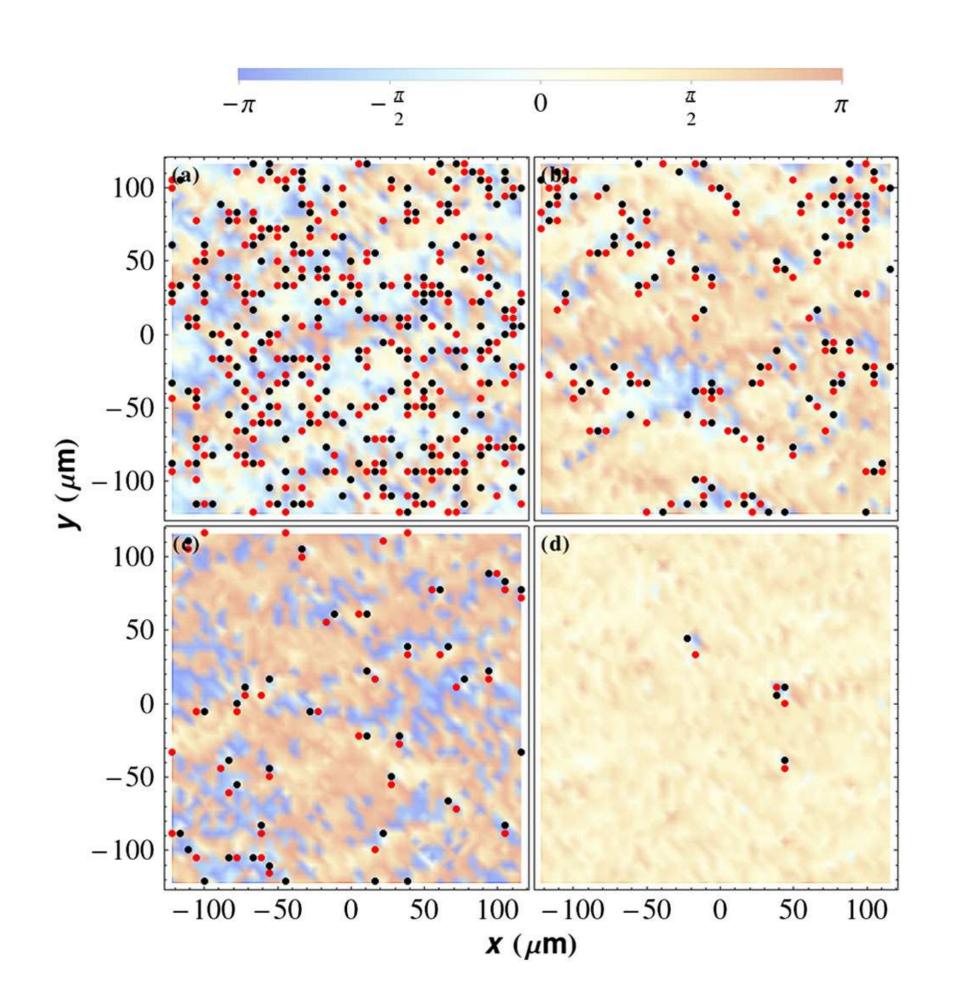
in the absence of vortices

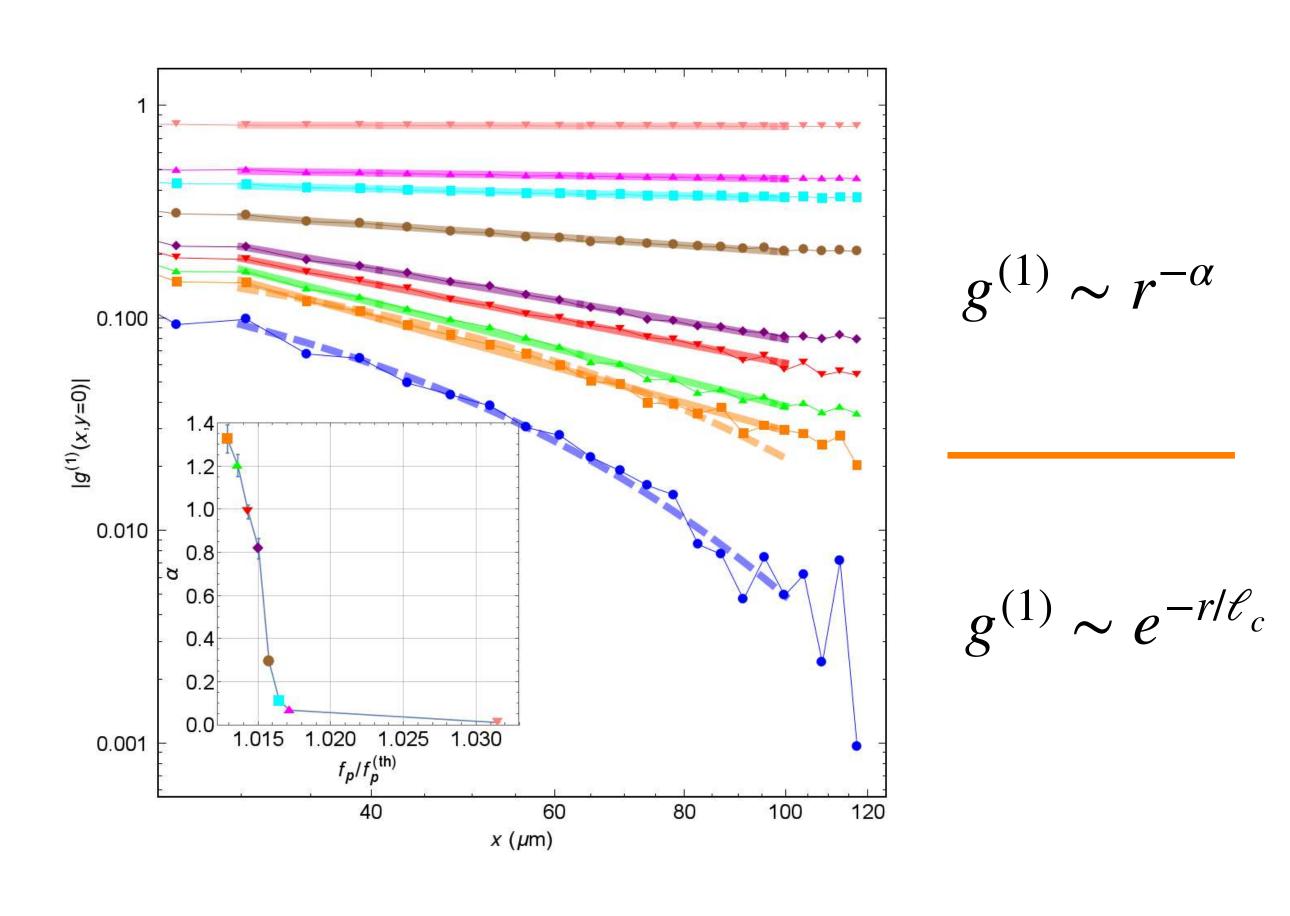
equal space

$$\langle (\theta(x,t) - \theta(x,0))^2 \rangle \sim \log(\sqrt{t})$$

$$\Rightarrow \langle \psi^*(x,t)\psi(x,0)\rangle \approx ne^{-\frac{1}{2}\langle [\theta(x,t)-\theta(x,0)]^2\rangle} \sim |t|^{-\alpha/2}$$

noneq BKT





G. Dagvadorj et al. PRX 2015

2D KPZ

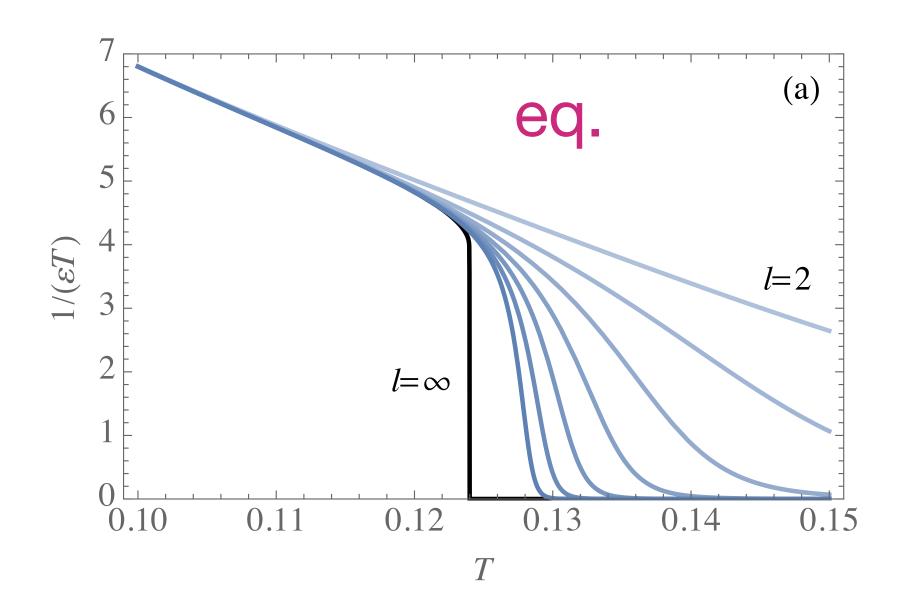
Correlations from power law (equilibrium) to stretched exponential

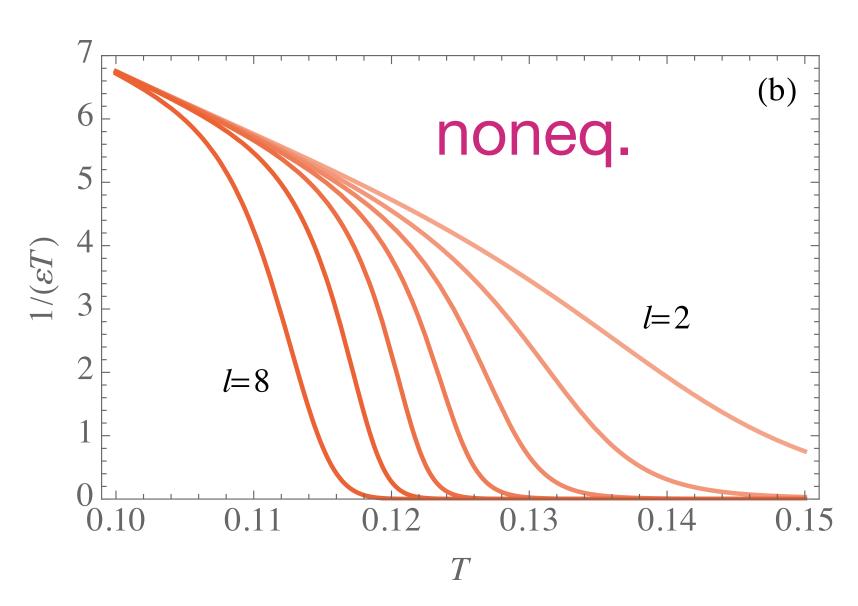
$$g^{(1)}(r) \sim \exp(-r^{\alpha})$$

KPZ:
$$\alpha \approx 0.39$$

$$\beta \approx 0.24$$

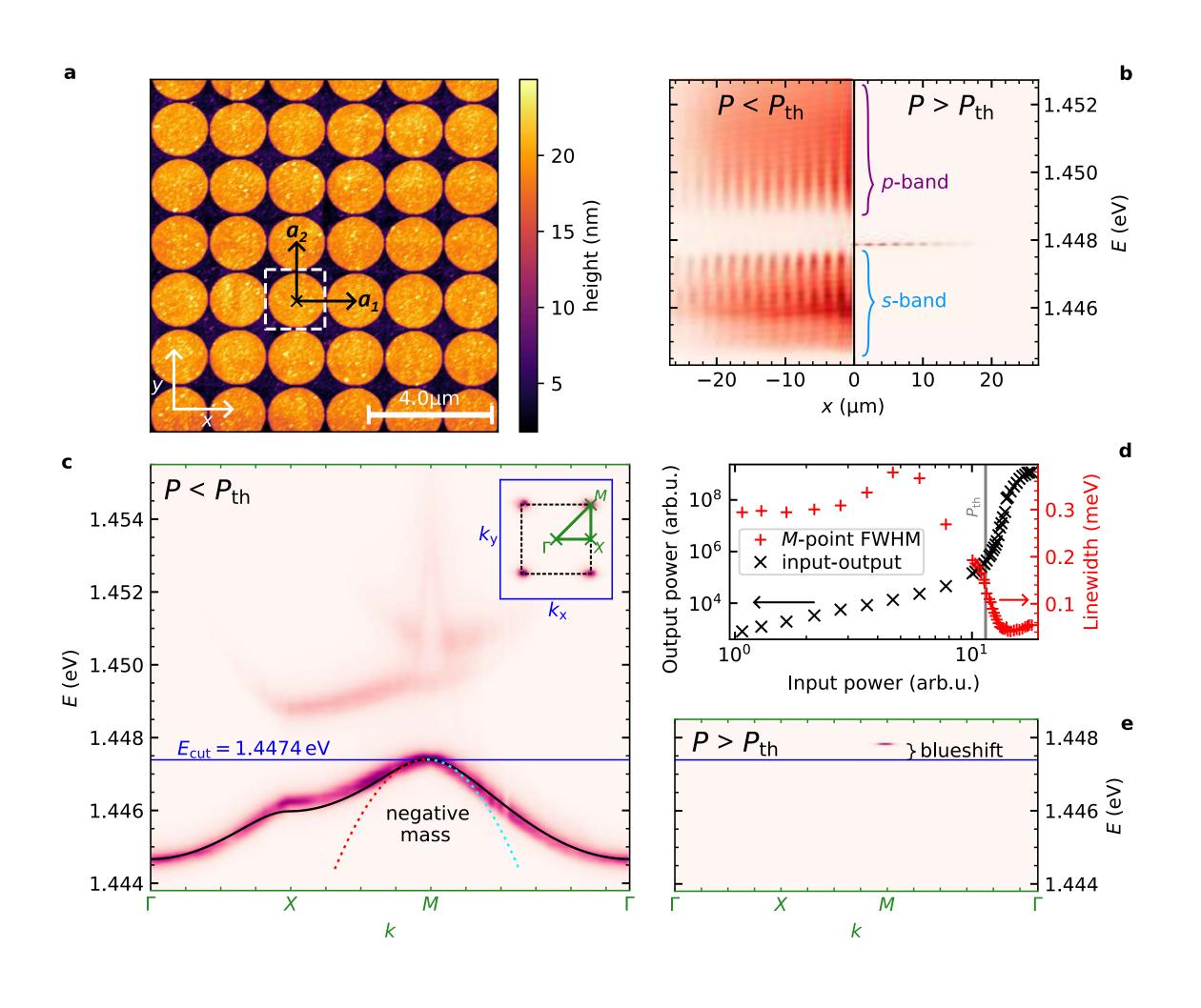
$$z \approx 1.61$$



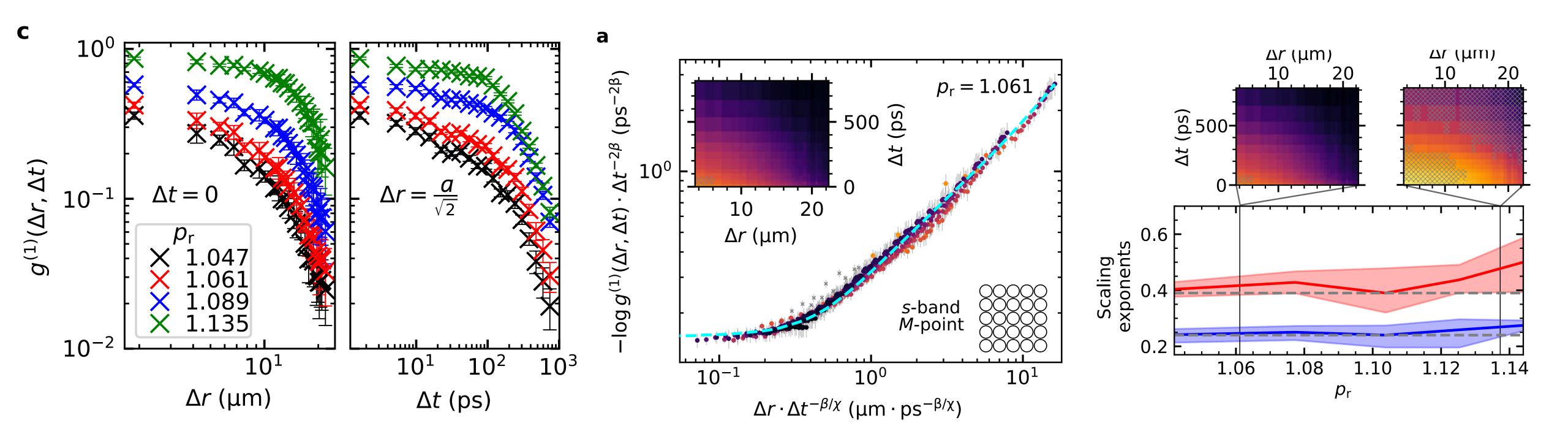


G. Wachtel et al. PRB **94** 104520 (2016)

2D KPZ in polaritons



2D KPZ in polaritons



Summary

- Condensates of light are well described by stochastic dissipative classical field models
- (Weak) phase fluctuations are in the KPZ universality class, but of of compact variable
- Topics not covered here: nonhermitian physics, topology, superfluidity, analog Hawking, blockade physics
 - I. Carusotto and C. Ciuti RMP 2013,
 - I. Carusotto, J. Bloch and MW. Nat. Phys. Rev. 2022