



# **Tokamak Operational Scenarios**



**DPG Advanced Physics School ,The Physics of ITER'** Bad Honnef, 25.09.2014

#### **Hartmut Zohm**

Max-Planck-Institut für Plasmaphysik 85748 Garching







- What is a 'tokamak (operational) scenario'?
- Optimisation strategies for tokamak scenarios
- Conventional scenarios
- Advanced scenarios
- Summary and conclusions



#### What is a ,tokamak scenario'?



A tokamak (operational) scenario is a recipe to run a tokamak discharge Plasma discharge characterised by

- external control parameters:  $B_t$ ,  $R_0$ , a,  $\kappa$ ,  $\delta$ ,  $P_{heat}$ ,  $\Phi_D$ ...
- integral plasma parameters:  $\beta = 2\mu_0 /B^2$ ,  $I_p = 2\pi \int j(r) r dr...$
- plasma profiles: pressure p(r) = n(r) \*T(r), current density j(r)





 $\rightarrow$  operational scenario best characterised by shape of p(r), j(r)



### Control of the profiles j(r)and p(r) is limited







safety factor:

$$q \approx \frac{r}{R} \frac{B_{tor}}{B_{pol}} \propto \frac{r^2}{R} \frac{B_{tor}}{I_p}$$

ITER Q=10 simulation

- ohmic current coupled to temperature profile via  $\sigma \sim T^{3/2}$   $\rightarrow$  inductive current profiles always peaked, *q*-profiles monotonic
- external heating systems drive current, but with limited efficiency (typically less than 0.1 A per 1 W under relevant conditions)...
- pressure gradient drives toroidal 'bootstrap' current:  $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol}$



### Control of the profiles j(r)and p(r) is limited



Pressure profile determined by combination of heating / fuelling profile and radial transport coefficients

- ohmic heating coupled to temperature profile via  $\sigma \sim T^{3/2}$
- external heating methods allow for some variation ICRH/ECRH deposition determined by B-field, NBI has usually broad profile
- under reactor-like conditions, dominant  $\alpha$ -heating ~  $(nT)^2$
- gas puff is peripheral source of particles, pellets further inside

Shape of profile will strongly depend on (turbulent) heat conductivity and particle diffusivity (i.e. be 'self-organised')





- What is a 'tokamak (operational) scenario'?
- Optimisation strategies for tokamak scenarios
- Conventional scenarios
- Advanced scenarios
- Summary and conclusions



### Figure of merit for fusion performance $nT\tau$



Power  $P_{loss}$  needed to sustain plasma

• determined by thermal insulation:  $\tau_E = W_{plasma}/P_{loss} \text{ ('energy confinement time')}$ 

Fusion power increases with  $W_{plasma}$ 

• 
$$P_{fus} \sim n_D n_T < \sigma v > \sim n_e^2 T^2 \sim W_{plasma}^2$$

Present day experiments:  $P_{loss}$  compensated by external heating

• 
$$Q = P_{fus}/P_{ext} \approx P_{fus}/P_{loss} \sim nT\tau_E$$

Reactor:  $P_{loss}$  compensated by  $\alpha$ -(self)heating



• 
$$Q = P_{fus}/P_{ext} = P_{fus}/(P_{loss} - P_{\alpha}) \rightarrow \infty$$
 (ignited plasma)



# Optimisation of $nT\tau_E$ ideal pressure limit



Optimising nT means high pressure and, for given magnetic field, high  $\beta = 2\mu_0 /B^2$ 

This quantity is limited by magneto-hydrodynamic (MHD) instabilities

'Ideal' MHD limit (ultimate limit, plasma unstable on Alfvén time scale  $\sim 10 \, \mu s$ , only limited by inertia)

• 'Troyon' limit  $\beta_{max} \sim I_p/(aB)$ , leads to definition of  $\beta_N = \beta/(I_p/(aB))$ 





### Optimisation of $nT\tau_E$ resistive pressure limit



Optimising nT means high pressure and, for given magnetic field, high  $\beta = 2\mu_0 /B^2$ 

This quantity is limited by magneto-hydrodynamic (MHD) instabilities

'Resistive' MHD limit (on local current redistribution time scale ~ 100 ms)

Neoclassical Tearing Mode (NTM)





# Optimisation of $nT\tau_E$ density limit





Empirical, Greenwald-limit describes well maximum density

- seems to be linked to a change in edge transport at n~n<sub>G</sub>
- can be overcome if density profile shape is varied (peaked)



# Operation at $n/n_{GW} > 1$





Stable operation at  $n/n_{GW} = 1.5$  using pellets



# Operation at $n/n_{GW} > 1$





Edge density stays below  $n_{GW}$  in all cases (up to  $n_{e0} = 4 \times n_{GW}!$ )

H-mode density limit = edge density limit



# Optimisation of $nT\tau_E$ : confinement scaling





Empirical ITER 98(p,y) scaling:

$$\tau_E \sim H I_p^{0.93} P_{heat}^{-0.63} B_t^{0.15} \dots$$

Empirical confinement scalings show linear increase of  $\tau_E$  with  $I_p$ 

- note the power degradation ( $\tau_E$  decreases with  $P_{heat}!$ )
- 'H-factor' H measures the quality of confinement relative to the scaling



### Optimisation of $nT\tau_E$ current limit



#### BUT: for given $B_t$ , $I_p$ is limited by current gradient driven MHD instabilities





Limit to safety factor  $q \sim (r/R) (B_{tor}/B_{pol})$ 

- for q < 1, tokamak unconditionally unstable  $\rightarrow$  central 'sawtooth' instability
- for  $q_{edge} 
  ightarrow 2$ , plasma tends to disrupt (external kink) limits value of  $I_p$



# Optimisation of $nT\tau_E$





Optimising for Q=P<sub>fus</sub>/P<sub>ext</sub> drives operational point close to operational limits



#### Tokamak optimisation: steady state operation



For steady state tokamak operation, high  $I_p$  is not desirable:

Tokamak operation without transformer: current 100% noninductive

- external CD has low efficiency (remember less than 0.1 A per W)
- internal bootstrap current high for high  $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol}$

$$\rightarrow f_{NI} \sim I_{bs}/I_p \sim p/B_{pol}^2 \sim \beta_{pol}$$

'Advanced' scenarios, which aim at steady state, need high  $\beta$ , low  $I_p$ , have to make up for loss in  $\tau_F$  (e.g. through transport barriers)

Without the 'steady state' boundary condition, a tokamak scenario is called 'conventional'



# Optimisation of $nT\tau_E$





Optimising for Q=P<sub>fus</sub>/P<sub>ext</sub> drives operational point close to operational limits



# Optimisation of $nT\tau_E$





Including the steady state constraint emphasizes the  $\beta$ -limit (and de-emphasizes current limit)





- What is a 'tokamak (operational) scenario'?
- Optimisation strategies for tokamak scenarios
- Conventional scenarios
- Advanced scenarios
- Summary and conclusions



# The (low confinement) L-mode scenario





Standard scenario without special tailoring of geometry or profiles

- central current density usually limited by sawteeth
- temperature gradient sits at critical value over most of profile
- extrapolates to very large (R > 10 m,  $I_p > 30$  MA) pulsed reactor



### The (high confinement) H-mode scenario





With hot (low collisionality) conditions, edge transport barrier develops

- gives higher boundary condition for 'stiff' temperature profiles
- global confinement  $\tau_E$  roughly factor 2 better than L-mode
- extrapolates to more attractive ( $R \sim 8$  m,  $I_p \sim 20$  MA) pulsed reactor

#### H-mode is ITER standard scenario for Q=10...





The design point allows for...

- ...achieving Q=10 with conservative assumptions
- ...incorporation of ,moderate surprises'
- ...achieving ignition (Q  $\rightarrow \infty$ ) if surprises are positive



#### ...but some open issues remain...



#### Need to minimise ELM impact on divertor

- reduce power flow to divertor by radiative edge cooling
- special variants of the scenario (Quiescent H-mode, type II ELMs)
- ELM mitigation pellet pacing or Resonant Magnetic Perturbations

#### Need to tackle NTM problem

 NTM suppression by Electron Cyclotron Current Drive demonstrated, but have to demonstrate that this can be used as reliable tool





- What is a 'tokamak (operational) scenario'?
- Optimisation strategies for tokamak scenarios
- Conventional scenarios
- Advanced scenarios
- Summary and conclusions



#### Advanced tokamak – the problem of steady state



Advanced scenarios aim at stationary (transformerless) operation

- external CD has low efficiency (remember less than 0.1 A per W)
- internal bootstrap current high for high  $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol}$

$$\rightarrow f_{NI} \sim I_{bs}/I_p \sim p/B_{pol}^2 \sim \beta_{pol}$$

Recipe to obtain high bootstrap fraction:

- low  $B_{pol}$ , i.e. high q elevate or reverse q-profile  $(q=(r/R)(B_{tol}/B_{pol}))$
- eliminates NTMs (reversed shear, no low resonant q-surfaces)
- high pressure where  $B_{pol}$  is low, i.e. peaked p(r)

Both recipes tend to make discharge ideal MHD (kink) unstable!

In addition,  $j_{bs}$  profile should be consistent with q-profile



#### Advanced tokamak – the problem of steady state





A self-consistent solution is theoretically possible

- reversing *q*-profile suppresses turbulence internal transport barrier (ITB)
- large bootstrap current at mid-radius supports reversed *q*-profile



#### Problems of the Advanced tokamak scenario



Broad current profile leads to low kink stability (low  $\beta$ -limit):

- can partly be cured by close conducting shell, but kink instability then grows on resistive time scale of wall (Resistive Wall Mode RWM)
- can be counteracted by helical coils, but this needs sophisticated feedback

Position of ITB and minimum of *q*-profile must be well aligned

• needs active control of both p(r) and j(r) profiles – difficult with limited actuator set (and cross-coupling between the profiles)



### Effect of a conducting shell on stability...





Close-by conducting wall can stabilise external kink instability

 usually not an issue fo conventional scenario, but advanced scenarios prone to external kink due to broad current/peaked pressure profile



#### ...but no wall is ideally conducting!





When ideal kink is wall stabilised, RWM can grow on wall time scale

- rotation w.r.t. wall can stabilise the RWM if  $\omega_{rot} >> 1/\tau_W$
- balance between wall drag and (rotating) plasma drag on mode



### RWM control by Resonant Magnetic Perturbations





Feedback control using RMPs shows possibility to exceed no-wall  $\beta$ -limit

- rotation plays a strong role in this process and has to be understood better (ITER is predicted to have very low rotation)
- fast particle stabilisation can help substantially even at low rotation



#### Advanced Tokamak Stability is a tough Problem





Good performance can only be kept for several confinement times, not stationary on the current diffusion time (10 – 50  $\tau_E$  in these devices)



#### A compromise: the ,hybrid' scenario



#### Reversed shear, ITB discharges

- + very large bootstrap fraction
- + steady state should be possible
- low  $\beta$ -limit (kink, infernal, RWM)
- delicate to operate

Zero shear, 'hybrid' discharges

- + higher  $\beta$ -limit (NTMs)
- + 'easy' to operate
- smaller bootstrap fraction
- have to elevate q(0)(also avoids sawteeth, NTMs)



Hybrid operation aims at flat, elevated q-profile discharges with high q(0) Not clear if this projects to steady state, but it will be very long pulse...





- What is a 'tokamak (operational) scenario'?
- Optimisation strategies for tokamak scenarios
- Conventional scenarios
- Advanced scenarios
- Summary and conclusions



### **Summary and Conclusions**





A variety of tokamak operational scenarios exists

- L-mode: low performance, pulsed operation, no need for profile control
- H-mode: higher performance, pulsed operation, MHD control needed
- Advanced modes: higher performance, steady state, needs profile control



### **Summary and Conclusions**



ITER aims at operation in conventional and advanced scenarios

- demonstrating Q=10 in conventional (conservative) operation scenarios
- demonstrating long pulse (steady state) operation in ,advanced' scenarios

| Scenario:  | Standard | Low q | Hybrid | Advanced |
|------------|----------|-------|--------|----------|
| Ip [MA]    | 15       | 17    | 13.8   | 9        |
| Bt [T]     | 5.3      | 5.3   | 5.3    | 5.18     |
| βΝ         | 1.8      | 2.2   | 1.9    | 3        |
| Pfus [MW]  | 400      | 700   | 400    | 356      |
| Q          | 10       | 20    | 5.4    | 6        |
| tpulse [s] | 400      | 100   | 1000   | 3000     |

One mission of ITER and the accompanying programme is to develop and verify an operational scenario for DEMO

- DEMO scenario must be a point design (no longer an experiment)
- actuators even more limited (e.g. maximum of 2 H&CD methods)