
Problem 5

Gravitational decoherence

Max Joseph Fahn – Friedrich-Alexander-Universität Erlangen-Nürnberg

Background Realistic physical quantum systems are usually not isolated but in continuous in-

teraction with some environment which can lead to an exchange of energy and information. If

one is only interested in the behaviour of a specic part (”core system”) of the entire system, one

considers this part as so-called open quantum system and neglects the detailed evolution of the

environment; only its effective inuence on the core system is considered. This treatment leads

to effects like dissipation (loss of energy) or decoherence (loss of information) in the core sys-

tem. In this problem you will work out a toy model system for decoherence induced by gravity

on somematter systemwhich we consider as core system. Inspired by eld theory, we will model

thematter systemunder consideration as a harmonic oscillator and the environment as a bath of

harmonic oscillators modelling gravitational waves/gravitons that transfer the gravitational in-

teraction in our model here. The structure of the coupling term in the Lagrangian for this system

is then determined by general relativity:
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The harmonic oscillator modelling the matter part has constant mass M , positive frequency Ω

and position variable x, the oscillators for the environment, labelled with integers i, have con-

stant and equal massesm, positive frequencies ωi and position variables qi. The coupling, mod-

erated by the coupling parameter λ, links the energy of the matter system with the conguration

(=position) variable of the environment. Note that the entire Lagrangian has no explicit time

dependence.

a) [0.5 points] Use the Euler-Lagrange equations to show that without coupling (that is for λ = 0)
one indeed obtains the uncoupled equations ofmotion for a harmonic oscillator in the core system

and one for each i in the environment.

b) [1 point] The size of the coupling parameter λ describes the strength of the gravitational inter-

action between the matter system and the environment. While for arbitrary λ the treatment and

physical justication of such a toy model might be difcult because one would in general need a

full theory of quantum gravity to describe such a system in an appropriate way, we focus on weak

interactions (i.e. small λ), where one can work with perturbation theory and also follow a Fock

quantisation in the full eld theory case. Perform the Legendre transformation of the above La-

grangian and use the assumption of weak coupling to arrive at the following Hamiltonian:
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where p denotes the canonically conjugated momentum to x and pi to qi.

c) [0.5 points] In a next step, we want to quantise this system on a Hilbert space HSE = HS ⊗HE

in the standard fashion by quantising the single harmonic oscillators, where the one for the matter
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system lives on HS and the ones of the environment on HE . Use Ladder operators a (for the core

system) and bi (for the environment),
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[a, a†] = 1, [a, a] = [a†, a†] = 0 (5.3)
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[bi, b

†
j ] = δij [bi, bj ] = [b†i , b

†
j ] = 0 , (5.4)

to show that the quantised Hamiltonian can be written as

H = HS ⊗ 1E + 1S ⊗HE + λHSE (5.5)

with
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Note that a(†) and b
(†)
i live on different Hilbert spaces and hence commute.

d) [0.5 points] An open quantum system is usually described in the density operator formalism.

Given a Hilbert spaceHwith normalised states {|ψA⟩}, a density operator can be written down as

ρ =


A

pA |ψA⟩ ⟨ψA| , (5.8)

where the pA are non-negative coefcients and the trace of the density matrix Tr(ρ) = 1. Working

in the Schrödinger picture, i.e. with constant pA, show that the Schrödinger equation for the wave

function implies the Liouville-von Neumann equation that describes time evolution of the density

operator:
d

dt
ρ(t) = −

i

ℏ
[H, ρ(t)] , (5.9)

where you can assume the Hamiltonian to be self-adjoint (as is the one in this problem).

e) [1.5 points] To describe time evolution, one uses besides the Schrödinger picture (where the time

dependence is in the wave function) and the Heisenberg picture (where the time dependence is in

the operators) also the so-called interaction picture, where both wave function |ψ⟩ and operatorsA

are time-dependent and evolve in the following way. In our notation of the open quantum system

introduced above, the transformation of these quantities from Schrödinger to interaction picture is

|ψ(t)⟩ −→ |ψ(t)⟩ = U
†
0(t, 0) |ψ(t)⟩ (5.10)

A −→ A = U
†
0(t, 0)AU0(t, 0) =: A(t) , (5.11)

where |ψ(t)⟩ = U(t, 0) |ψ(0)⟩ denotes the state in Schrödinger picture, U is the time evolution op-

erator of the entire system, i.e. the solution of iℏ d
dt
U(t, 0) = HU(t, 0), and U0 is the time evolution

operator of the λ = 0 system. Show that in the interaction picture the Liouville-von Neumann

equation of the entire system reads

d

dt
ρ(t) = −

i

ℏ
λ

HSE(t), ρ(t)


(5.12)

12 DOPPLERS 2023 Problem 5



with ρ(t) := U
†
0(t, 0)ρ(t)U0(t, 0) and determine HSE(t) explicitly.

Hint: Use the fact that eABe−A =


∞

m=0
1
m! [A,B](m), where [A,B](m) denotes the iterated commu-

tator dened recursively by [A,B](m) := [A, [A,B](m−1)] and [A,B](0) = B.

f ) [0.5 points] Show that the evolution equation in (5.12) can be rewritten as
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g) [2 points] As in the end we are only interested in the behaviour of the core system under the

effective inuence of the environment, we can trace out the environment in the above Liouville-von

Neumann equation. This partial trace over the environmental Hilbert space HE yields a so-called

master equation which is a time evolution equation only for ρS(t) := TrE{ρ(t)},

d
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To evaluate this further, we invoke a set of assumptions:

• In the last term in the master equation we can replace ρ(t′) −→ ρS(t) ⊗ ρE(t). This is the

Born and the rst Markov approximation and can be used here because we work with a small

coupling constant λ.

• At time t = 0 the core system and environment were in a product state, i.e. ρ(0) = ρS(0) ⊗
ρE(0).

• The environment is in a steady thermal state ρE(t) = ρE(0) = ρE = 1
Z
e−βHE with positive

temperature parameterΘ := 1
β
.

Show that the master equation then simplies to

d

dt
ρS(t) = −

λ2

ℏ2

 t

0
dt′ TrE
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′), ρS(t)⊗ ρE ]]


(5.15)

anddetermine the normalisation factorZ in ρE aswell as ρE from the requirement that TrE{ρE} = 1.
Hint: Use the occupation number basis to evaluate the partial trace and use the limit of the geo-

metric series:


∞

m=0 ax
m = a

1−x
for |x| < 1.

h) [2 points] Explicitly compute the double commutator in the master equation and show that

d

dt
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, (5.16)

where a star denotes complex conjugation, {X,Y } := XY + Y X the anti-commutator and the

functions f(t) and g(t) are given by

f(t) :=

 t

0
dt′
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2N(ωi) cos[ωi(t− t′)] (5.17)

g(t) :=
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with the Bose-Einstein distributionN(ω) := 1
eβℏωi−1

.

Hint: Use the occupation number basis to evaluate the partial trace.

i) [0.5 points] With additional approximations and calculation techniques, it is possible to evaluate

f(t) and g(t) further. Here we won’t consider the details; we just assume this has been carried out

resulting in FΘ := λ2

ℏ2
f(t) being time independent, real and linear in the temperature parameter

Θ = 1
β
and iG := λ2

ℏ2
g(t) being also time independent and purely imaginary. Transform the master

equation back into the Schrödinger picture and show that a solution to it in the occupation number

basis, i.e. in the basis ρS(t) =


m,n ρ(m,n, t) |m⟩ ⟨n|, is then given by

ρS(m,n, t) = e−
i

ℏ
(Em−En)t−ΘF (Em−En)2t−iG(E2

m−E2
n)tρS(m,n, 0) , (5.19)

whereHS |m⟩ = Em |m⟩.

j) [1 point] Argue why the term containingG corresponds to an energy renormalisation due to the

presence of the environment. Show that the master equation leaves the populations in the density

matrix in occupation basis (i.e. the ρ(m,m, t)) unaffected.
The term containing F leads to decoherence due to the presence of the environment (gravitation-

ally induced decoherence). Any part of the density matrix except the populations are damped and

therefore will decrease with time, making the density matrix in occupation number basis approach

a diagonal matrix with no interference probabilities and hence becoming a classical system. How

does a change by a factor of two of the temperature parameterΘ, the coupling parameter λ and the

occupation number differencem− n affect the decoherence?
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