

Problem 2

Superselection

Janik Kruse – Adam Mickiewicz University in Poznań

Background If ψ_1 , ψ_2 are wave functions of two quantum states (i.e. elements of a Hilbert space with scalar product $\langle \cdot | \cdot \rangle$), any superposition

$$\psi = c_1 \psi_1 + c_2 \psi_2, \ c_1, c_2 \in \mathbb{C}, \tag{2.1}$$

is a wave function of a quantum state, too. A characteristic feature of quantum mechanics is that the relative phase between ψ_1 and ψ_2 is in general observable: Multiplying a wave function by a complex number of modulus 1 does not change the corresponding physical state, but

$$\psi(\alpha) = e^{i\alpha} c_1 \psi_1 + c_2 \psi_2, \ \alpha \in [0, 2\pi),$$
(2.2)

is in general a wave function of a different quantum state than ψ . However, if ψ_1 and ψ_2 are separated by a **superselection rule**, that is,

$$\langle \psi_1 | A \psi_2 \rangle = 0$$
 for all observables A , (2.3)

then the relative phase is not observable (see part a)). In this problem, we study superselection rules for a quantum particle confined to a closed loop.

a) [*1 point*] Verify that the relative phase between ψ_1 and ψ_2 is not observable (i.e. $\langle \psi(\alpha) | A\psi(\alpha) \rangle = \langle \psi | A\psi \rangle$ for all observables *A*) if ψ_1 and ψ_2 are separated by a superselection rule.

We analyse a quantum particle confined to a closed loop with circumference L. We model the state space of such a particle by L-periodic wave functions ψ with phase shift $\theta \in [0, 2\pi)$ (i.e. $\psi(x + L) = e^{i\theta}\psi(x)$), and we denote the Hilbert space of all such functions by \mathcal{H}_{θ} . The scalar product in \mathcal{H}_{θ} is defined as follows:

$$\langle \varphi | \psi \rangle_{\mathcal{H}_{\theta}} = \int_{0}^{L} \overline{\varphi(x)} \psi(x) \, \mathrm{d}x.$$
 (2.4)

b) [*1 point*] Consider the momentum operator $P_{\theta} = -i\partial_x$ acting on \mathcal{H}_{θ} . Show that P_{θ} is hermitian (i.e. $\langle \varphi | P_{\theta} \psi \rangle_{\mathcal{H}_{\theta}} = \langle P_{\theta} \varphi | \psi \rangle_{\mathcal{H}_{\theta}}$ for wave functions φ, ψ that are *L*-periodic with phase shift θ).

c) [1 point] Compute the eigenvalues and the normalised eigenfunctions of P_{θ} .

d) [2 points] Consider the (normalised) wave function ψ defined as the unique extension of

$$\psi(x) = \sqrt{30/L^5} x(x-L), \ x \in [0,L), \tag{2.5}$$

to an *L*-periodic wave function with phase shift $\theta \in [0, 2\pi)$. Compute the probability that the momentum $(2\pi k + \theta)/L, k \in \mathbb{Z}$, is measured in the state ψ . Verify that the probability depends on θ but not on *L*. *Hint*: $\int_0^1 e^{-i2ax} x(x-1) dx = \frac{e^{-ia}}{2a^3} (a \cos(a) - \sin(a)), a \in \mathbb{R}$.

e) [*2 points*] Prove that θ is a superselection rule (i.e. *L*-periodic wave functions with different phase shifts are separated by a superselection rule).

The space \mathcal{H}_{θ} is a **superselection sector** because θ is a superselection rule. The (continuous) direct sum of all superselection sectors,

$$\mathcal{H} = \frac{1}{2\pi} \int_{[0,2\pi)}^{\oplus} \mathcal{H}_{\theta} \,\mathrm{d}\theta, \qquad (2.6)$$

is the physical Hilbert space.¹ Accordingly, the (self-adjoint) physical momentum operator is the direct sum of all P_{θ} :

$$P = \frac{1}{2\pi} \int_{[0,2\pi)}^{\oplus} P_{\theta} \,\mathrm{d}\theta.$$
(2.8)

f) [*1 point*] Apply your result from part c) to determine the (generalised) eigenvalues² of the physical momentum operator *P*. *Hint*: If *A*, *B* are two operators and ψ an eigenvector of *A*, then $\psi \oplus 0$ is an eigenvector of $A \oplus B$.

g) [*1 point*] Denote by $L^2(\mathbb{R})$ the Hilbert space of all square-integrable wave functions on \mathbb{R} , and consider the following operator that maps $L^2(\mathbb{R})$ to \mathcal{H} :

$$(U\varphi)_{\theta}(x) = \sum_{k=-\infty}^{\infty} e^{-ik\theta} \varphi(x+kL), \ \varphi \in L^{2}(\mathbb{R}).$$
(2.9)

Verify that $(U\varphi)_{\theta}$ is *L*-periodic with phase shift θ and that *U* is an isometry (i.e. $\langle U\varphi_1|U\varphi_2\rangle_{\mathcal{H}} = \int_{\mathbb{R}} \overline{\varphi_1(x)}\varphi_2(x) \, dx$ for all square-integrable wave functions φ_1, φ_2).

h) [*1 point*] In fact, *U* is a unitary operator and transforms the physical momentum operator *P* to the momentum operator $\tilde{P} = -i\partial_x$ on $L^2(\mathbb{R})$ (i.e. $U^{\dagger}PU = \tilde{P}$, where U^{\dagger} is the adjoint operator of *U*). Compute the (generalised) eigenvalues of \tilde{P} , and compare them with your result from part f). Explain why the generalised eigenvalues of *P* and \tilde{P} are the same.

$$\langle \psi_1 | \psi_2 \rangle_{\mathcal{H}} := \frac{1}{2\pi} \int_0^{2\pi} \langle \psi_{1,\theta} | \psi_{2,\theta} \rangle_{\mathcal{H}_{\theta}} \, \mathrm{d}\theta = \frac{1}{2\pi} \int_0^{2\pi} \int_0^L \overline{\psi_{1,\theta}(x)} \psi_{2,\theta}(x) \, \mathrm{d}x \, \mathrm{d}\theta.$$
(2.7)

¹An element $\psi = \frac{1}{2\pi} \int_{[0,2\pi)}^{\oplus} \psi_{\theta} \, d\theta \in \mathcal{H}$ is a continuous direct sum of elements $\psi_{\theta} \in \mathcal{H}_{\theta}$. The scalar product of two elements $\psi_1, \psi_2 \in \mathcal{H}$ is defined as follows:

²Roughly speaking, generalised eigenvalues are eigenvalues whose corresponding eigenvectors are not necessarily normalisable. Example: Every $\lambda \in \mathbb{R}$ is a generalised eigenvalue of the position operator X = x on $L^2(\mathbb{R})$. An eigenvector corresponding to λ is the δ -distribution $x \mapsto \delta(x - \lambda)$, which is not a square-integrable function in the usual sense.