siunitx — A comprehensive (SI) units package

Joseph Wright†

Released 2011/09/13

Abstract

Physical quantities have both numbers and units, and each physical quantity should be expressed as the product of a number and a unit. Typesetting physical quantities requires care to ensure that the combined mathematical meaning of the number–unit combination is clear. In particular, the SI units system lays down a consistent set of units with rules on how these are to be used. However, different countries and publishers have differing conventions on the exact appearance of numbers (and units).

The siunitx package provides a set of tools for authors to typeset quantities in a consistent way. The package has an extended set of configuration options which make it possible to follow varying typographic conventions with the same input syntax. The package includes automated processing of numbers and units, and the ability to control tabular alignment of numbers.

Contents

1 Introduction 3
2 Installation 4
3 \texttt{siunitx} for the impatient 5
4 Using the \texttt{siunitx} package 6
 4.1 Loading the package ... 6
 4.2 Numbers .. 6
 4.3 Units .. 7

* This file describes v2.3f, last revised 2011/09/13.
† E-mail: joseph.wright@morningstar2.co.uk
4.4 The unit macros ... 9
4.5 Creating new macros 13
4.6 Tabular material .. 14

5 Comprehensive details of package control options 18
 5.1 The key–value control system 18
 5.2 Detecting fonts ... 19
 5.3 Font settings ... 21
 5.4 Parsing numbers 22
 5.5 Post-processing numbers 24
 5.6 Printing numbers 27
 5.7 Multi-part numbers 32
 5.8 Lists and ranges of numbers 33
 5.9 Angles .. 34
 5.10 Creating units .. 35
 5.11 Loading additional units 36
 5.12 Using units ... 41
 5.13 Numbers with units 45
 5.14 Tabular material 47
 5.15 Symbols ... 63
 5.16 Other options .. 63
 5.17 Local configurations 64

6 Localisation ... 65

7 Hints for using siunitx 65
 7.1 Ensuring text or math output 65
 7.2 Expanding content in tables 66
 7.3 Using siunitx with datatool 67
 7.4 Using units such as μm s⁻¹ in headings 68
 7.5 Symbols and \texttt{Xe\TeX} 69
 7.6 Scaled document fonts with \texttt{Xe\TeX} 69
The correct application of units of measurement is very important in technical applications. For this reason, carefully-crafted definitions of a coherent units system have been laid down by the Conférence Générale des Poids et Mesures (CGPM): this has resulted in
the Système International d’Unités (SI). At the same time, typographic conventions for correctly displaying both numbers and units exist to ensure that no loss of meaning occurs in printed matter.

\texttt{siunitx} aims to provide a unified method for \LaTeX users to typeset numbers and units correctly and easily. The design philosophy of \texttt{siunitx} is to follow the agreed rules by default, but to allow variation through option settings. In this way, users can use \texttt{siunitx} to follow the requirements of publishers, co-authors, universities, etc. without needing to alter the input at all.

\section{Installation}

The package is supplied in \texttt{dtx} format and as a pre-extracted zip file, \texttt{siunitx.tds.zip}. The later is most convenient for most users: simply unzip this in your local \texttt{texmf} directory and run \texttt{texhash} to update the database of file locations. If you want to unpack the \texttt{dtx} yourself, running \texttt{tex siunitx.dtx} will extract the package whereas \texttt{latex siunitx.dtx} will extract it and also typeset the documentation.

The package requires \LaTeX\XeTeX support as provided in the \texttt{l3kernel} and \texttt{l3packages} bundles. Both of these are available on \texttt{CTAN} as ready-to-install zip files. Suitable versions are available in MiKTeX 2.9 and TeX Live 2011 (updating the relevant packages online may be necessary). \LaTeX\XeTeX, and so \texttt{siunitx}, requires the \texttt{e-\TeX} extensions: these are available on all modern TeX systems.

Typesetting the documentation requires a number of packages in addition to those needed to use the package. This is mainly because of the number of demonstration items included in the text. To compile the documentation without error, you will need the packages:

- \texttt{amsmath}
- \texttt{booktabs}
- \texttt{cancel}
- \texttt{caption}
- \texttt{cleveref}
- \texttt{colortbl}
- \texttt{csquotes}
- \texttt{helvet}
- \texttt{mathpazo}
- \texttt{multirow}
The \texttt{xfrac} package is also loaded if available, but is not required to typeset the documentation.

\section{\texttt{siunitx} for the impatient}

The package provides the user macros:

- \texttt{\ang\[⟨options⟩\]⟨angle⟩}
- \texttt{\num\[⟨options⟩\]⟨number⟩}
- \texttt{\si\[⟨options⟩\]⟨unit⟩}
- \texttt{\SI\[⟨options⟩\]{⟨number⟩}\[⟨pre-unit⟩\]⟨unit⟩}
- \texttt{\numlist\[⟨options⟩\]⟨numbers⟩}
- \texttt{\numrange\[⟨options⟩\]⟨numbers⟩\{⟨number2⟩\}}
- \texttt{\SIlist\[⟨options⟩\]⟨numbers⟩\{⟨unit⟩\}}
- \texttt{\SIrange\[⟨options⟩\]⟨number1⟩\{⟨number2⟩\}\{⟨unit⟩\}}
- \texttt{\sisetup\{⟨options⟩\}}
- \texttt{\tablenum\[⟨options⟩\]⟨number⟩}

plus the \texttt{S} and \texttt{s} column types for decimal alignments and units in tabular environments. These user macros and column types are designed for typesetting numbers and units with control of appearance and with intelligent processing.

Numbers are processed with understanding of exponents, complex numbers and multiplication.

\begin{verbatim}
12345.67890 \num{12345,67890} \\
1 \pm 2i \num{1+-2i} \\
0.3 \times 10^{15} \num{.3e45} \\
1.654 \times 2.34 \times 3.430 \num{1.654 \times 2.34 \times 3.430}
\end{verbatim}

The unit system can interpret units given as text to be used directly or as macro-based units. In the latter case, different formatting is possible.
Simple lists and ranges of numbers can be handled.

By default, all text is typeset in the current upright, serif math font. This can be changed by setting the appropriate options: `\sisetup{detect-all}` will use the current font for typesetting.

4 Using the siunitx package

4.1 Loading the package

The package should be loaded in the usual \LaTeX\ way.

\usepackage{siunitx}

The key–value options described later in this document can be used when loading the package, for example

\usepackage[version-1-compatibility]{siunitx}

to use options from version 1 of the package.

4.2 Numbers

\num \num[⟨options⟩]{⟨number⟩}
Numbers are automatically formatted by the \texttt{\num} macro. This takes one optional argument, \texttt{\langle options\rangle}, and one mandatory one, \texttt{\langle number\rangle}. The contents of \langle number\rangle are automatically formatted. The formatter removes ‘hard’ spaces (\,, and \textasciitilde), automatically identifies exponents (by default marked using e, E, d or D) and adds the appropriate spacing of large numbers. With the standard settings a leading zero is added before a decimal marker, if needed: both ‘.’ and ‘,’ are recognised as decimal markers.

\begin{verbatim}
123 \num{123} \textbackslash \textbackslash \\
1234 \num{1234} \textbackslash \textbackslash \\
12345 \num{12345} \textbackslash \textbackslash \\
0.123 \num{0.123} \textbackslash \textbackslash \\
0.1234 \num{0.1234} \textbackslash \textbackslash \\
0.12345 \num{0.12345} \textbackslash \textbackslash \\
3.45 \times 10^{-4} \num{3.45 \mathrm{\times} 10^{-4}} \textbackslash \textbackslash \\
-10^{10} \num{-10^{10}} \textbackslash \textbackslash
\end{verbatim}

Note that numbers are parsed before typesetting, which does have a performance overhead (only obvious with very large amounts of numerical input). The parser understands a range of input syntaxes, as demonstrated above.

\begin{verbatim}
\texttt{numlist} \texttt{\langle options\rangle}\{\texttt{\langle numbers\rangle}\}
\texttt{numlist}\{\texttt{\langle options\rangle}\}\{\texttt{\langle numbers\rangle}\}
\texttt{\textbackslash numlist}\{\texttt{\langle options\rangle}\}\{\texttt{\langle numbers\rangle}\}
\end{verbatim}

Lists of numbers may be processed using the \texttt{\numlist} function. Each \texttt{\langle number\rangle} is given within the list of \texttt{\langle numbers\rangle} within a brace pair, as the list can have a flexible length. This function should be used in text mode, a common feature of all of the list and range functions provided by \texttt{siunitx}.\footnote{The reason for this restriction is that the separators between items may involve text-mode spaces which must be able to vanish at line breaks. It is not possible to achieve this effect from inside math mode.}

\begin{verbatim}
10, 30, 50 and 70 \numlist{10; 30; 50; 70}
\end{verbatim}

\begin{verbatim}
\texttt{\textbackslash numrange} \texttt{\langle options\rangle}\{\texttt{\langle number1\rangle}}\{\texttt{\langle number2\rangle}\}
\texttt{\textbackslash numrange}\{\texttt{\langle options\rangle}\}\{\texttt{\langle number1\rangle}}\{\texttt{\langle number2\rangle}\}
\end{verbatim}

Simple ranges of numbers can be handled using the \texttt{\numrange} function. This acts in the same way as \texttt{\num}, but inserts a phrase or other text between the two entries. This function should be used in text mode.

\begin{verbatim}
10 to 30 \numrange{10}{30}
\end{verbatim}

\begin{verbatim}
\texttt{\textbackslash ang} \texttt{\langle options\rangle}\{\texttt{\langle angle\rangle}\}
\texttt{\textbackslash ang}\{\texttt{\langle options\rangle}\}\{\texttt{\langle angle\rangle}\}
\end{verbatim}

Angles can be typeset using the \texttt{\ang} command. The \texttt{\langle angle\rangle} can be given either as a decimal number or as a semi-colon separated list of degrees, minutes and seconds, which is called ‘arc format’ in this document. The numbers which make up an angle are processed using the same system as other numbers.
\begin{verbatim}
10° \ang{10} \n
12.3° \ang{12.3} \n
4.5° \ang{4.5} \n
1°2′3″ \ang{1;2;3} \n
1″ \ang{;;1} \n
10° \ang{+10;;} \n
-0°1′ \ang{-0;1;} \n
4.3 Units
\end{verbatim}

The symbol for a unit can be typeset using the \texttt{\si} macro: this provides full control over output format for the unit. Like the \texttt{\num} macro, \texttt{\si} takes one optional and one mandatory argument. The unit formatting system can accept two types of input. When the \texttt{\langle si\rangle} contains literal items (for example letters or numbers) then \texttt{\textsc{sunitx}} converts \texttt{_} and \texttt{~} into inter-unit product and correctly positions sub- and superscripts specified using _ and ^. The formatting methods will work with both math and text mode.

\texttt{\si{kg.m/s^2}} \n
\texttt{\si{g_{polymer}~mol_{cat}.s^{-1}}} \n
The second operation mode for the \texttt{\si} macro is an ‘interpreted’ system. Here, each unit, SI multiple prefix and power is given a macro name. These are entered in a method very similar to the reading of the unit name in English.

\texttt{\si{\kilo\gram\metre\per\square\second}} \n
\texttt{\si{\gram\per\cubic\centi\metre}} \n
\texttt{\si{\square\volt\cubic\lumen\per\farad}} \n
\texttt{\si{\metre\squared\per\gray\cubic\lux}} \n
\texttt{\si{\henry\second}} \n
kg m s^{-2} \n
\texttt{\si{\texttt{g}_{\texttt{polymer}}\cdot \texttt{mol}_{\texttt{cat}}\cdot s^{-1}}} \n
On its own, this is less convenient than the direct method, although it does use meaning rather than appearance for input. However, the package allows you to define new unit macros; a large number of pre-defined abbreviations are also supplied. More importantly, by defining macros for units, instead of literal input, new functionality is made available. By altering the settings used by the package, the same input can yield a variety of different output formats. For example, the \texttt{\per} macro can give reciprocal powers, slashes or be used to construct units as fractions.

\texttt{\SI{\langle options\rangle}{\langle number\rangle}\{\langle preunit\rangle\}{\langle unit\rangle}}} \n
Very often, numbers and units are given together. Formally, the value of a quantity is
the product of the number and the unit, the space being regarded as a multiplication sign \([0]\). The \SI macro combines the functionality of \num and \si, and makes this both possible and easy. The \(\langle\text{number}\rangle\) and \(\langle\text{si}\rangle\) arguments work exactly like those for the \num and \si macros, respectively. \(\langle\text{preunit}\rangle\) is a unit to be typeset before the numerical value (most likely to be a currency).

\[
\text{\SI}[\text{mode=\text{text}}]{1.23}{\text{J.mol}^{-\text{1}}.\text{K}^{-\text{1}}} \\
\text{\SI}{.23e7}{\text{\text{candela}}} \\
\text{\SI[\text{per-mode=\text{symbol}}]{1.99}{\$/\text{\text{per kilogram}}} \\
\text{\SI[\text{per-mode=\text{fraction}}]{1,345}{\text{\text{coulomb}}/\text{\text{per mole}}}}
\]

1.23 J mol\(^{-1}\) K\(^{-1}\)
0.23 \times 10\(^7\) cd
$1.99/\text{kg}$
1.345 $\frac{C}{\text{mol}}$

It is possible to set up the unit macros to be available outside of the \SI and \si functions. This is not the standard behaviour as there is the risk of name clashes (for example, \bar is used by other packages, and several packages define \degree). Full details of using ‘stand alone’ units are found in Section 5.10.

\SIlist \SIlist[\langle\text{options}\rangle]\{\langle\text{numbers}\rangle\}\{\langle\text{unit}\rangle\}

Lists of numbers with units can be handled using the \SIlist function. The behaviour of this function is similar to \numlist, but with the addition of a unit to each number. This function should be used in text mode.

10 m, 30 m and 45 m
\SIlist\{10;30;45\}\{\text{\text{\text{metre}}}\}

\SIrange \SIrange[\langle\text{options}\rangle]\{\langle\text{number1}\rangle\}\{\langle\text{number2}\rangle\}\{\langle\text{unit}\rangle\}

Ranges of numbers with units can be handled using the \SIrange function. The behaviour of this function is similar to \numrange, but with the addition of a unit to each number. This function should be used in text mode.

10 m to 30 m
\SIrange\{10\}\{30\}\{\text{\text{\text{metre}}}\}

4.4 The unit macros

The package always defines the basic set of SI units with macro names. This includes the base SI units, the derived units with special names and the prefixes. A small number of powers are also given pre-defined names. Full details of units in the SI are available on-line [1].

\meter The seven base SI units are always defined (Table 1). In addition, the macro \meter is available as an alias for \metre, for users of US spellings. The full details of the base units are given in the SI Brochure [3].

\celsius The SI also lists a number of units which have special names and symbols [4]: these
Table 1: SI base units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampere</td>
<td>\ampere</td>
<td>A</td>
</tr>
<tr>
<td>candela</td>
<td>\candela</td>
<td>cd</td>
</tr>
<tr>
<td>kelvin</td>
<td>\kelvin</td>
<td>K</td>
</tr>
<tr>
<td>kilogram</td>
<td>\kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>metre</td>
<td>\metre</td>
<td>m</td>
</tr>
<tr>
<td>mole</td>
<td>\mole</td>
<td>mol</td>
</tr>
<tr>
<td>second</td>
<td>\second</td>
<td>s</td>
</tr>
</tbody>
</table>

Table 2: Coherent derived units in the SI with special names and symbols.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>becquerel</td>
<td>\becquerel</td>
<td>Bq</td>
<td>newton</td>
<td>\newton</td>
<td>N</td>
</tr>
<tr>
<td>degree Celsius</td>
<td>\degreeCelsius</td>
<td>°C</td>
<td>ohm</td>
<td>\ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>coulomb</td>
<td>\coulomb</td>
<td>C</td>
<td>pascal</td>
<td>\pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>farad</td>
<td>\farad</td>
<td>F</td>
<td>radian</td>
<td>\radian</td>
<td>rad</td>
</tr>
<tr>
<td>gray</td>
<td>\gray</td>
<td>Gy</td>
<td>siemens</td>
<td>\siemens</td>
<td>S</td>
</tr>
<tr>
<td>hertz</td>
<td>\hertz</td>
<td>Hz</td>
<td>sievert</td>
<td>\sievert</td>
<td>Sv</td>
</tr>
<tr>
<td>henry</td>
<td>\henry</td>
<td>H</td>
<td>steradian</td>
<td>\steradian</td>
<td>sr</td>
</tr>
<tr>
<td>joule</td>
<td>\joule</td>
<td>J</td>
<td>tesla</td>
<td>\tesla</td>
<td>T</td>
</tr>
<tr>
<td>katal</td>
<td>\katal</td>
<td>kat</td>
<td>volt</td>
<td>\volt</td>
<td>V</td>
</tr>
<tr>
<td>lumen</td>
<td>\lumen</td>
<td>lm</td>
<td>watt</td>
<td>\watt</td>
<td>W</td>
</tr>
<tr>
<td>lux</td>
<td>\lux</td>
<td>lx</td>
<td>weber</td>
<td>\weber</td>
<td>Wb</td>
</tr>
</tbody>
</table>
Table 3: Non-SI units accepted for use with the International System of Units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>day</td>
<td>\day</td>
<td>d</td>
</tr>
<tr>
<td>degree</td>
<td>\degree</td>
<td>°</td>
</tr>
<tr>
<td>hectare</td>
<td>\hectare</td>
<td>ha</td>
</tr>
<tr>
<td>hour</td>
<td>\hour</td>
<td>h</td>
</tr>
<tr>
<td>litre</td>
<td>\litre</td>
<td>l</td>
</tr>
<tr>
<td>litre</td>
<td>\liter</td>
<td>L</td>
</tr>
<tr>
<td>minute (plane angle)</td>
<td>\arcminute</td>
<td>'</td>
</tr>
<tr>
<td>minute (time)</td>
<td>\minute</td>
<td>min</td>
</tr>
<tr>
<td>second (plane angle)</td>
<td>\arcsecond</td>
<td>''</td>
</tr>
<tr>
<td>tonne</td>
<td>\tonne</td>
<td>t</td>
</tr>
</tbody>
</table>

Table 4: Non-SI units whose values in SI units must be obtained experimentally.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>astronomical unit</td>
<td>\astronomicalunit</td>
<td>ua</td>
</tr>
<tr>
<td>atomic mass unit</td>
<td>\atomicmassunit</td>
<td>u</td>
</tr>
<tr>
<td>bohr</td>
<td>\bohr</td>
<td>a₀</td>
</tr>
<tr>
<td>speed of light</td>
<td>\clight</td>
<td>c₀</td>
</tr>
<tr>
<td>dalton</td>
<td>\dalton</td>
<td>Da</td>
</tr>
<tr>
<td>electron mass</td>
<td>\electronmass</td>
<td>mₑ</td>
</tr>
<tr>
<td>electronvolt</td>
<td>\electronvolt</td>
<td>eV</td>
</tr>
<tr>
<td>elementary charge</td>
<td>\elementarycharge</td>
<td>e</td>
</tr>
<tr>
<td>hartree</td>
<td>\hartree</td>
<td>E₇</td>
</tr>
<tr>
<td>reduced Planck constant</td>
<td>\planckbar</td>
<td>h</td>
</tr>
</tbody>
</table>

are listed in Table 2. As a short-cut for the degree Celsius, the unit \celsius is defined equivalent to \degreeCelsius.

In addition to the official SI units, siunitx also provides macros for a number of units which are accepted for use in the SI although they are not SI units. Table 3 lists the 'accepted' units [6]. Some units are fundamental physical quantities, and these are non-SI but can be used within the SI (Table 4, [7]). There are also a set of non-SI units which are used in certain defined circumstances (Table 5), although they are not necessarily officially sanctioned [8].

In addition to the units themselves, siunitx provides pre-defined macros for all of the SI prefixes (Table 6, [5]). The spelling \deka is provided for US users as an alternative to \deca.

A small number of pre-defined powers are provided as macros. \square and \cubic are intended for use before units, with \squared and \cubed going after the unit.
Table 5: Other non-SI units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Macro</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ångström</td>
<td>\angstrom</td>
<td>Å</td>
</tr>
<tr>
<td>bar</td>
<td>bar</td>
<td>bar</td>
</tr>
<tr>
<td>barn</td>
<td>\barn</td>
<td>b</td>
</tr>
<tr>
<td>bel</td>
<td>\bel</td>
<td>B</td>
</tr>
<tr>
<td>decibel</td>
<td>\decibel</td>
<td>dB</td>
</tr>
<tr>
<td>knot</td>
<td>\knot</td>
<td>kn</td>
</tr>
<tr>
<td>millimetre of mercury</td>
<td>\mmHg</td>
<td>mmHg</td>
</tr>
<tr>
<td>nautical mile</td>
<td>\nauticalmile</td>
<td>M</td>
</tr>
<tr>
<td>neper</td>
<td>\neper</td>
<td>Np</td>
</tr>
</tbody>
</table>

Table 6: SI prefixes.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Macro</th>
<th>Symbol</th>
<th>Power</th>
<th>Prefix</th>
<th>Macro</th>
<th>Symbol</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>yocto</td>
<td>\yocto</td>
<td>y</td>
<td>−24</td>
<td>deca</td>
<td>\deca</td>
<td>da</td>
<td>1</td>
</tr>
<tr>
<td>zepto</td>
<td>\zepto</td>
<td>z</td>
<td>−21</td>
<td>hecto</td>
<td>\hecto</td>
<td>h</td>
<td>2</td>
</tr>
<tr>
<td>atto</td>
<td>\atto</td>
<td>a</td>
<td>−18</td>
<td>kilo</td>
<td>\kilo</td>
<td>k</td>
<td>3</td>
</tr>
<tr>
<td>femto</td>
<td>\femto</td>
<td>f</td>
<td>−15</td>
<td>mega</td>
<td>\mega</td>
<td>M</td>
<td>6</td>
</tr>
<tr>
<td>pico</td>
<td>\pico</td>
<td>p</td>
<td>−12</td>
<td>giga</td>
<td>\giga</td>
<td>G</td>
<td>9</td>
</tr>
<tr>
<td>nano</td>
<td>\nano</td>
<td>n</td>
<td>−9</td>
<td>tera</td>
<td>\tera</td>
<td>T</td>
<td>12</td>
</tr>
<tr>
<td>micro</td>
<td>\micro</td>
<td>µ</td>
<td>−6</td>
<td>peta</td>
<td>\peta</td>
<td>P</td>
<td>15</td>
</tr>
<tr>
<td>milli</td>
<td>\milli</td>
<td>m</td>
<td>−3</td>
<td>exa</td>
<td>\exa</td>
<td>E</td>
<td>18</td>
</tr>
<tr>
<td>centi</td>
<td>\centi</td>
<td>c</td>
<td>−2</td>
<td>zetta</td>
<td>\zetta</td>
<td>Z</td>
<td>21</td>
</tr>
<tr>
<td>deci</td>
<td>\deci</td>
<td>d</td>
<td>−1</td>
<td>yotta</td>
<td>\yotta</td>
<td>Y</td>
<td>24</td>
</tr>
</tbody>
</table>
\text{Bq}^2 \quad \text{\si{\square\becquerel}} \\
\text{J}^2\text{lm}^{-1} \quad \text{\si{\joule\squared\per\lumen}} \\
\text{lx}^3\text{VT}^3 \quad \text{\si{\cubic\lux\volt\tesla\cubed}}

\text{Generic powers can be inserted on a one-off basis using the } \texttt{\textbackslash tothe} \text{ and } \texttt{\textbackslash raiseto} \text{ macros. These are the only macros for units which take an argument:}

\text{H}^5 \quad \text{\si{\henry\textbackslash tothe{5}}} \\
\text{rad}^{4.5} \quad \text{\si{\textbackslash raiseto{4.5}\radian}}

\text{Reciprocal powers are indicated using the } \texttt{\textbackslash per} \text{ macro. This applies to the next unit only, unless the } \texttt{\textbackslash sticky-per} \text{ option is turned on.}

\text{J mol}^{-1}\text{K}^{-1} \quad \text{\si{\joule\textbackslash per\mole\textbackslash per\kelvin}} \\
\text{J mol}^{-1}\text{K} \quad \text{\si{\joule\textbackslash per\mole\textbackslash kelvin}} \\
\text{H}^{-5} \quad \text{\si{\textbackslash per\textbackslash henry\textbackslash tothe{5}}} \\
\text{Bq}^{-2} \quad \text{\si{\textbackslash per\textbackslash square\textbackslash becquerel}}

\text{As for generic powers, generic qualifiers are also available using the } \texttt{\textbackslash of} \text{ function:}

\text{\si{\textbackslash kilogram\textbackslash of\{metal\}}} \\
\text{\SI\{qualifier-mode = brackets\}}{\{0.1\}\text{\textbackslash milli\textbackslash mole\textbackslash of\{cat\}\textbackslash per\textbackslash kilogram\textbackslash of\{prod\}}} \\
\text{kg}_{\text{metal}}{0.1 \text{ mmol}(\text{cat}) \text{ kg}(\text{prod})^{-1}}

\text{If the } \texttt{\textbackslash cancel} \text{ package is loaded, it is possible to ‘cancel out’ units using the } \texttt{\textbackslash cancel} \text{ macro. This applies to the next unit, in a similar manner to a prefix. The } \texttt{\textbackslash highlight} \text{ macro is also available to selectively colour units. Both } \texttt{\textbackslash cancel} \text{ and } \texttt{\textbackslash highlight} \text{ are of course outside of the normal semantic meaning of units, but are provided as they may be useful in some cases.}

\text{\textbackslash si\{per-mode = fraction\}}{\text{\textbackslash cancel\textbackslash kilogram\textbackslash metre\textbackslash per\textbackslash cancel\textbackslash kilogram\textbackslash per\second}} \\
\text{\textbackslash si\{highlight\{red\}\textbackslash kilogram\textbackslash metre\textbackslash per\second\}} \\
\text{\si\{unit\text{-}color = purple\}}{\text{\textbackslash highlight\{red\}\textbackslash kilogram\textbackslash metre\textbackslash per\second}}

\text{kg m} \quad \text{kg m s}^{-1} \\
\text{kg s}^{-1} \\
\text{kg m s}^{-1}

\text{When using the unit macros, the package is able to validate the input given. As part of this, stand-alone unit prefixes can be used with the } \texttt{\textbackslash si} \text{ macro}

\text{13}
\si{\kilo} \ \ \ \si{\micro} \ \ \ \si[prefixes-as-symbols = false]{\kilo}

k
μ
10^3

However, the package only allows a single prefix to be used in this way: multiple prefixes will give an error, as will trying to give a number without a unit. So the following will raise errors:

\si{\kilo\gram\micro} \ \ \ \SI{10}{\micro}

4.5 Creating new macros

The various macro components of a unit have to be defined before they can be used. The package supplies a number of common definitions, but new definitions are also possible. As the definition of a logical unit should remain the same in a single document, these creation functions are all preamble-only.

\DeclareSIUnit \DeclareSIUnit[(options)]{(unit)}{(symbol)}

New units are produced using the \DeclareSIUnit macro. \texttt{(symbol)} can contain literal input, other units, multiple prefixes, powers and \texttt{\per}, although literal text should not be intermixed with unit macros. Units can be created with \texttt{(options)} from the usual list understood by \texttt{siunitx}, and apply the specific unit macro only. The (first) optional argument to \texttt{\SI} and \texttt{\si} can be used to override the settings for the unit. A typical example is the \texttt{\degree} unit.

3.1415° \SI{3.1415}{\degree}

This is declared in the package as:

\DeclareSIUnit[number-unit-product = {}] \ \degree{\SIUnitSymbolDegree}

The spacing can still be altered at point of use:

\SI{67890}{\degree} \ \ \ \SI[number-unit-product = \,]{67890}{\degree}

67 890°
67 890 °

The meaning of a pre-defined unit can be altered by using \texttt{\ DeclareSIUnit} after loading \texttt{siunitx}. This will overwrite the original definition with the newer version.
The standard SI powers of ten are defined by the package, and are described above. However, the user can define new prefixes with \DeclareSIPrefix. The \DeclareBinaryPrefix function is also available for creating binary prefixes, with the same syntax (\textit{powers-ten} being replaced by \textit{powers-two}). For example, \texttt{kilo} and \texttt{kibi} are defined:

\begin{verbatim}
\DeclareSIPrefix\kilo{k}{3}
\DeclareBinaryPrefix\kibi{Ki}{10}
\end{verbatim}

These create power macros to appear before or after the unit they apply to. For example, the preamble to a document might contain:

\begin{verbatim}
\DeclareSIPrePower\quartic{4}
\DeclareSIPostPower\tothefourth{4}
\end{verbatim}

with the functions then used in the document as:

\begin{verbatim}
kg4
\si{\kilogram\tothefourth}\|
\si{\quartic\metre}
\end{verbatim}

Following the syntax of the other macros, qualifiers are created with the syntax \DeclareSIQualifier\{\textit{qualifier}\}\{\textit{symbol}\}. In contrast to the other parts of a unit, there are no pre-defined qualifiers. It is therefore entirely up to the user to create these. For example, to identify the mass of a product created when using a particular catalyst, the preamble could contain:

\begin{verbatim}
\DeclareSIQualifier\polymer{pol}
\DeclareSIQualifier\catalyst{cat}
\end{verbatim}

and then in the body the document could read:

\begin{verbatim}
\SI{1.234}{\gram\polymer\per\mole\catalyst\per\hour}
1.234 g\textsubscript{pol} mol-1 cat h-1
\end{verbatim}

4.6 Tabular material

Aligning numbers in tabular content is handled by a new column type, the S column. This new column type can align material using a number of different strategies, with the aim of flexibility of output without needing to alter the input. The method used as standard is to place the decimal marker in the number at the centre of the cell and to align the material appropriately (Table 7).
Table 7: Standard behaviour of the S column type.

<table>
<thead>
<tr>
<th>Some Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3456</td>
</tr>
<tr>
<td>34.2345</td>
</tr>
<tr>
<td>−6.7835</td>
</tr>
<tr>
<td>90.473</td>
</tr>
<tr>
<td>5642.5</td>
</tr>
<tr>
<td>1.2×10^3</td>
</tr>
<tr>
<td>10^4</td>
</tr>
</tbody>
</table>

The S column will attempt to automatically detect material which should be placed before or after a number, and will maintain the alignment of the numerical data (Table 8). If the material could be mistaken for part of a number, it should be protected by braces. The use of \textcolor in a table cell will also be detected and will override any general colour applied by \texttt{siunitx}.

\begin{table}
\centering
\begin{tabular}{S}
\toprule
\{Some Values\} \\
\midrule
2.3456 \\
34.2345 \\
−6.7835 \\
90.473 \\
5642.5 \\
1.2e3 \\
e4 \\
\bottomrule
\end{tabular}
\end{table}
Table 8: Detection of surrounding material in an \textit{S} column.

<table>
<thead>
<tr>
<th>Some Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.34</td>
</tr>
<tr>
<td>975.31</td>
</tr>
<tr>
<td>44.268a</td>
</tr>
</tbody>
</table>

\begin{table}
\caption{Controlling complex alignment with the \texttt{\textbackslash{tablenum}} macro.}
\centering
\begin{tabular}{lr}
\toprule
Heading & Heading \\
\midrule
Info & More info \\
Info & More info \\
\multicolumn{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{12,34}}} \\
\multicolumn{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{333.5567}}} \\
\multicolumn{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{4563.21}}} \\
\bottomrule
\end{tabular}
\begin{tabular}{lr}
\toprule
Heading & Heading \\
\midrule
\multirow{2}*{\texttt{\textbackslash{tablenum}{88,999}}} & aaa \\
& bbb \\
\multirow{2}*{\texttt{\textbackslash{tablenum}{33,435}}} & ccc \\
& ddd \\
\bottomrule
\end{tabular}
\end{table}

\color{purple} 975.31 \textbackslash{}
44.268 \textsuperscript{\emph{a}}

\texttt{\textbackslash{bottomrule}}
\texttt{\textbackslash{end}{\textbackslash{tabular}}}
\texttt{\textbackslash{end}{\textbackslash{table}}}

\begin{table}
\caption{Options for %10cm}
\begin{tabular}{lr}
\toprule
Heading & Heading \\
\midrule
\multicolumn{2}{c}{\texttt{\textbackslash{tablenum}[\texttt{options}]{\texttt{number}}}} \\
\texttt{\textbackslash{caption}{Controlling complex alignment with the \texttt{\textbackslash{cs}{\textbackslash{tablenum}}} macro.}}
\texttt{\textbackslash{label}{\textbackslash{tab:tablenum}}}
\texttt{\textbackslash{centering}}
\texttt{\begin{tabular}{lr}}
\texttt{\textbackslash{toprule}}
Heading & Heading \\
\texttt{\textbackslash{midrule}}
Info & More info \\
Info & More info \\
\texttt{\textbackslash{\textbackslash{multicolumn}}{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{12,34}}}} \\
\texttt{\textbackslash{\textbackslash{multicolumn}}{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{333.5567}}}} \\
\texttt{\textbackslash{\textbackslash{multicolumn}}{2}{c}{\texttt{\textbackslash{tablenum}[table-format = 4.4]{4563.21}}}} \\
\texttt{\textbackslash{\textbackslash{bottomrule}}}
\texttt{\textbackslash{end}{\textbackslash{tabular}}}
\texttt{\textbackslash{hfil}}
\texttt{\begin{tabular}{lr}}
\texttt{\textbackslash{toprule}}
Heading & Heading \\
\texttt{\textbackslash{midrule}}
\texttt{\textbackslash{\textbackslash{multirow}}{2}*{\texttt{\textbackslash{tablenum}{88,999}}} & aaa} \\
& bbb \\
\texttt{\textbackslash{\textbackslash{\textbackslash{multirow}}}{2}*{\texttt{\textbackslash{tablenum}{33,435}}} & ccc} \\
& ddd \\
\texttt{\textbackslash{\textbackslash{bottomrule}}}
\texttt{\textbackslash{end}{\textbackslash{tabular}}}
\end{tabular}
\end{table}

2Provided by the \texttt{multirow} package
Table 9: Controlling complex alignment with the `\tablename` macro.

<table>
<thead>
<tr>
<th>Heading</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>More info</td>
</tr>
<tr>
<td>Info</td>
<td>More info</td>
</tr>
<tr>
<td>12.34</td>
<td>333.5567</td>
</tr>
<tr>
<td>4563.21</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Units in tables.

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m² s⁻¹</td>
</tr>
<tr>
<td>Pa</td>
</tr>
<tr>
<td>m s⁻¹</td>
</tr>
</tbody>
</table>

As a complement to the S column type, `siunitx` also provides a second column type, `s`. This is intended for producing columns of units. This allows both macro-based and explicit units to be printed easily (Table 10).

As the `\si` macro can take literal or macro input, the `s` column cannot validate the input. Everything in an `s` column is therefore passed to the `\si` macro for processing. To prevent this, you have to use `\multicolumn`, as is shown in Table 11. Notice that braces alone do not prevent processing and colouring of the cell contents.
Table 11: The s column processes everything.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m3</td>
<td>m3</td>
</tr>
<tr>
<td>kg</td>
<td>kg</td>
</tr>
</tbody>
</table>

5 Comprehensive details of package control options

5.1 The key–value control system

The behaviour of the \texttt{siunitx} package is controlled by a number of key–value options. These can be given globally using the \texttt{\sisetup} function or locally as the optional argument to the user macros.

The package uses a range of different key types:

- **Choice**: Takes a limited number of choices, which are described separately for each key.
- **Integer**: Requires a number as the argument.
- **Length**: Requires a length, either as a literal value such as 2.0 cm, or stored as a \LaTeX{} length, or \TeX{} dimension.
- **Literal**: A key which uses the value(s) given directly, either to check input (for example the input-digits key) or in output.
- **Math**: Similar to a literal option, but the input is always used in math mode, irrespective of other \texttt{siunitx} settings. Thus to text-mode only input must be placed inside the argument of a \text macro.
Table 12: Font detection options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>detect-all</td>
<td>Meta</td>
<td>(none)</td>
</tr>
<tr>
<td>detect-display-math</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>detect-family</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>detect-inline-family</td>
<td>Choice</td>
<td>text</td>
</tr>
<tr>
<td>detect-inline-weight</td>
<td>Choice</td>
<td>text</td>
</tr>
<tr>
<td>detect-mode</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>detect-none</td>
<td>Meta</td>
<td>(none)</td>
</tr>
<tr>
<td>detect-shape</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>detect-weight</td>
<td>Switch</td>
<td>false</td>
</tr>
</tbody>
</table>

Macro Requires a macro, which may need a single argument.

Meta These are options which actually apply a number of other options. As such, they do not take any value at all.

Switch These are on–off switches, and recognise true and false. Giving just the key name also turns the key on.

The tables of option names use these descriptions to indicate how the keys should be used.

5.2 Detecting fonts

The \texttt{siunitx} package controls the font used to print output independently of the surrounding material. The standard method is to ignore the surroundings entirely, and to use the current body fonts. However, the package can detect and follow surrounding bold, italic and font family changes. The font detection options are summarised in Table 12.

\begin{itemize}
\item detect-weight: The options detect-weight and detect-shape set detection of the prevailing font weight and font shape states, respectively. The font shape state is only checked if the surrounding material is not in math mode (as math text is always italic). The detect-shape option is an extension of the older detect-italic option, which is retained for backward compatibility. Detecting the current family (roman, sans serif or monospaced) is controlled by the detect-family setting, while the current mode (text or math) is detected using the detect-mode switch. For convenience, all of the preceding options can be turned on or off in one go using the detect-all and detect-none options. As the names indicate, detect-all sets all of detect-weight, detect-family, detect-shape and detect-mode to true, while detect-none sets all of them to false.
\item detect-inline-family: When \texttt{siunitx} macros are used in in-line math, the detection of font weight and font family can be tuned using the detect-inline-family and detect-inline-weight options. Both of these take the choices text and math.
\end{itemize}
\sisetup{
 detect-family = true,
 detect-inline-family = math
}%
\sffamily \num{1234} \$
\mathsf{\num{1234}}$
\sisetup{detect-inline-family = text}
\sffamily \num{1234}
$\mathsf{\num{1234} }$
\sisetup{
 detect-weight = true,
 detect-inline-weight = math
}%
\num{5678}
\boldmath \num{5678}
\bfseries \num{5678}
\sisetup{detect-inline-weight = text}
\boldmath \num{5678}
\bfseries \num{5678}
\sisetup{
 detect-display-math = true,
 detect-inline-weight = math
}%
\num{5678}
\sffamily

detect-display-math
The font detection system can treat displayed mathematical content in two ways. This
is controlled by the `detect-display-math` option. When set `true`, display mathematics
is treated independently from the body of the document. Thus the local *math* font is
checked for matching. In contrast, when set `false`, display material is treated with the
current running text font.\(^3\)

\sffamily

Some text
\sisetup{
 detect-family,
 detect-display-math = true
}
\SI{1.2e3}{\kilogram\kelvin\candela} \\
More text
\sisetup{detect-display-math = false}
\SI{3}{\metre\second\mole} \\
Some text
\[x = 1.2 \times 10^3 \text{ kg K cd} \]
More text
\[y = 3 \text{ m s mol} \]

\(^3\)Here, ‘display’ math means either typeset in \TeX’s display math mode or using the AMS display-like
environments. Simply using `\displaystyle` will not make otherwise in line math be detected as display
math.
Table 13: Font options (also available as number-... and unit-... versions).

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>Literal</td>
<td>⟨none⟩</td>
</tr>
<tr>
<td>math-rm</td>
<td>Macro</td>
<td>\mathrm</td>
</tr>
<tr>
<td>math-sf</td>
<td>Macro</td>
<td>\mathsf</td>
</tr>
<tr>
<td>math-tt</td>
<td>Macro</td>
<td>\mathtt</td>
</tr>
<tr>
<td>mode</td>
<td>Choice</td>
<td>math</td>
</tr>
<tr>
<td>text-rm</td>
<td>Macro</td>
<td>\textfamily</td>
</tr>
<tr>
<td>text-sf</td>
<td>Macro</td>
<td>\sffamily</td>
</tr>
<tr>
<td>text-tt</td>
<td>Macro</td>
<td>\ttfamily</td>
</tr>
</tbody>
</table>

5.3 Font settings

The relationship between font family detected and font family used for output is not fixed. The font detected by the package in the surrounding material does not have to match that used for output (Table 13).

- **mode**
 - The mode option determines whether \texttt{siunitx} uses math or text mode when printing output. The choices are math and text. When using math mode, text is printed using a math font whereas in text mode a text font is used. The extent to which this is visually obvious depends on the fonts in use in the document. This manual uses old style (lower-case) figures in text mode to highlight the differences. This option has no effect if the detect-mode switch is true.
 - If font family detection is inactive, \texttt{siunitx} uses the font family stored in either \texttt{math-rm} or \texttt{text-rm} for output. The choice of math or text depends on the mode setting. If font family detection is active, \texttt{siunitx} may be using a sans serif or monospaced font for output. In math mode, these are stored in \texttt{math-sf} and \texttt{math-tt}, and for text mode in \texttt{text-sf} and \texttt{text-tt}. Notice that the detected and output font families can differ.

```latex
\sisetup{detect-family}
\num{1234} \textsf{1234}\texttt{99 m} \SI{99}{\metre}
\sisetup{math-rm = \mathtt}
\num{1234} \textsf{1234}\texttt{99 m} \SI{99}{\metre}
```

- **color**
 - The colour of printed output can be set using the color option. When no colour is given, printing follows the surrounding text. In contrast, when a specific colour is given, it is used irrespective of the surroundings. As there are a number of different colour models available, it is left to user to load \texttt{color} or a more powerful colour package such as \texttt{xcolor}.
Some text
\SI{4}{\metre\per\sievert}
More text
\SI[color = blue]{4}{\metre\per\sievert}
Still red here!

Some text
4 m Sv\(^{-1}\)
More text
4 m Sv\(^{-1}\)
Still red here!

Every one of the font options can be given independently for units and number, with the prefixes unit- and number-, respectively. This allows fine control of output.

\SI{4}{\angstrom} \SI[number-color = green]{4}{\angstrom} \SI[unit-color = green]{4}{\angstrom}

5 Å
4 Å
4 Å

5.4 Parsing numbers

The package uses a sophisticated parsing system to understand numbers. This allows siunitx to carry out a range of formatting, as described later. All of the input options take lists of literal tokens, and are summarised in Table 14.

The basic parts of a number are the digits, any sign and a separator between the integer and decimal parts. These are stored in the input options input-digits, input-decimal-markers and input-signs, respectively. More than one input decimal marker can be used: it will be converted by the package to the appropriate output marker. Numbers which include an exponent part also require a marker for the exponent: this again is taken from the range of tokens in the input-exponent-markers option.

As well as ‘normal’ digits, the package will interpret symbolic ‘numbers’ (such as \(\pi\)) correctly if they are included in the input-symbols list. Symbols are always printed in math mode. Tokens given in the input-ignore list are totally passed over by siunitx: they will be removed from the input with no further processing.

In addition to signs, siunitx can recognise comparators, such as <. The package will automatically carry out conversions for <<, >>, <= and => to \ll, \gg, \le and \ge, respectively:

< 10 \num{< 10} \ll

\SI{>> 5}{\metre} \gg

\num{\le 0.12}
Table 14: Options for number parsing.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>input-close-uncertainty</td>
<td>Literal</td>
<td>)</td>
</tr>
<tr>
<td>input-comparators</td>
<td>Literal</td>
<td><=\approx\ge\leq\geq\ll \sim</td>
</tr>
<tr>
<td>input-complex-roots</td>
<td>Literal</td>
<td>{ij}</td>
</tr>
<tr>
<td>input-decimal-markers</td>
<td>Literal</td>
<td>.,</td>
</tr>
<tr>
<td>input-digits</td>
<td>Literal</td>
<td>0123456789</td>
</tr>
<tr>
<td>input-exponent-markers</td>
<td>Literal</td>
<td>dDeE</td>
</tr>
<tr>
<td>input-ignore</td>
<td>Literal</td>
<td>⟨none⟩</td>
</tr>
<tr>
<td>input-open-uncertainty</td>
<td>Literal</td>
<td>(</td>
</tr>
<tr>
<td>input-protect-tokens</td>
<td>Literal</td>
<td>\approx\approx\ge\geq\ll \sim</td>
</tr>
<tr>
<td>input-signs</td>
<td>Literal</td>
<td>\pm\mp</td>
</tr>
<tr>
<td>input-uncertainty-signs</td>
<td>Literal</td>
<td>\pm</td>
</tr>
<tr>
<td>input-symbols</td>
<td>Literal</td>
<td>\pm\dots</td>
</tr>
<tr>
<td>parse-numbers</td>
<td>Switch</td>
<td>true</td>
</tr>
</tbody>
</table>

In some fields, it is common to give the uncertainty in a number in brackets after the main part of the number, for example ‘1.234(5)’. The opening and closing symbols used for this type of input are set as `input-open-uncertainty` and `input-close-uncertainty`. Alternatively, the uncertainty may be given as a separate part following a sign. Which signs are valid for this operation is determined by the `input-uncertainty-signs` option. As with other signs, the combination `+-` will automatically be converted to `\pm` internally.

\[
\begin{align*}
9.99(9) & \quad \text{\num{9.99(9)}} \\
9.99(9) & \quad \text{\num{9.99 \pm 0.09}} \\
9.99(9) & \quad \text{\num{9.99 \pm 0.09}} \\
123.0(45) & \quad \text{\num{123 \pm 4.5}} \\
12.3(60) & \quad \text{\num{12.3 \pm 6}} \\
\end{align*}
\]

When using complex numbers in input, the complex root \((i = \sqrt{-1})\) is indicated by one of the tokens stored in `input-complex-roots`. The parser understands complex root symbols given either before or after the associated number (but will detect any invalid arrangement):

\[
\begin{align*}
9.99 + 88.8i & \quad \text{\num{9.99 + 88.8i}} \\
9.99 + 88.8i & \quad \text{\num{9.99 + i88.8}} \\
\end{align*}
\]

Some symbols can be problematic under expansion in \LaTeX. To allow these to be used in input without issue, the package can protect these tokens while expanding input. Symbols to be protected in this way should be listed in `input-protect-tokens`.

\[
\begin{align*}
\end{align*}
\]
Table 15: Number post-processing options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-decimal-zero</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>add-integer-zero</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>explicit-sign</td>
<td>Literal</td>
<td>⟨none⟩</td>
</tr>
<tr>
<td>fixed-exponent</td>
<td>Integer</td>
<td>0</td>
</tr>
<tr>
<td>minimum-integer-digits</td>
<td>Integer</td>
<td>0</td>
</tr>
<tr>
<td>retain-explicit-plus</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>retain-unity-mantissa</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>retain-zero-exponent</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>round-integer-to-decimal</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>round-minimum</td>
<td>Literal</td>
<td>0</td>
</tr>
<tr>
<td>round-mode</td>
<td>Choice</td>
<td>off</td>
</tr>
<tr>
<td>round-precision</td>
<td>Integer</td>
<td>2</td>
</tr>
<tr>
<td>scientific-notation</td>
<td>Switch</td>
<td>false</td>
</tr>
</tbody>
</table>

The parse-numbers option turns the entire parsing system on and off. The option is made available for two reasons. First, if all of the numbers in a document are to be reproduced ‘as given’, turning off the parser will represent a significant saving in processing required. Second, it allows the use of arbitrary \TeX code in numbers. If the parser is turned off, the input will be printed in math mode (requiring \text to protect any text in the number).

\num[parse-numbers = false]{\sqrt{2}} \\ \SI[parse-numbers = false]{\sqrt{3}}{\metre}

\sqrt{2} \sqrt{3} \text{m}

5.5 Post-processing numbers

Before typesetting numbers, various post-processing steps can be carried out. These involve adding or removing information from the number in a systematic way; the options are summarised in Table 15.

The \siunitx package can round numerical input to a fixed number of significant figures or decimal places. This is controlled by the round-mode option, which takes the choices off, figures and places. When rounding is turned on, the number of digits used (either decimal places or significant figures) is set using the round-precision option. No rounding will take place if the number contains an uncertainty component.
The standard settings for \texttt{siunitx} do not add a decimal part if none was given in the input. The \texttt{round-integer-to-decimal} option can be used to allow this conversion as part of the rounding process.

There are cases in which rounding will result in the number reaching zero. It may be desirable to show such results as below a threshold value. This can be achieved by setting \texttt{round-minimum} to the threshold value. There will be no effect when rounding to a number of significant figures as it is not possible to obtain the value zero in these cases.

It is possible to give real (floating point) numbers as input omitting the decimal or the integer parts of the number (for example 0.123 or 123.0). The options \texttt{add-decimal-zero} and \texttt{add-integer-zero} allow the package to ‘fill in’ the missing zero.
Related is the `minimum-integer-digits` option. This applies only to the integer part of the mantissa, and ensures that it will contain at least the specified number of digits. This is achieved by padding with zeros if needed.

\num{123} \ \num{456} \ \num{.789} \
\sisetup{
 add-decimal-zero = false,
 add-integer-zero = false,
}
\%
\num{123} \ \num{456} \ \num{.789}

The inclusion of a leading plus sign is usually unnecessary for positive numbers, and so the `retain-explicit-plus` option is available to control whether these are printed. At the same time, it may be useful to force all numbers to have a sign. This behaviour is controlled by the `explicit-sign` option: this is used if given and if no sign was present in the input.

\num{+345} \ \num{[retain-explicit-plus]{+345}} \ \num{[explicit-sign = -]{345}} \ \num{[explicit-sign = -]{+345}}

The retention of a zero exponent is controlled by the `retain-zero-exponent` option. The retention of a mantissa of one is likewise controlled by the `retain-unity-mantissa` option.

\num{1e4} \ \num{[retain-unity-mantissa = false]{1e4}} \ \num{444e0} \ \num{[retain-zero-exponent = true]{444e0}}

\[1 \times 10^4 \]
\[10^4 \]
\[444 \]
\[444 \times 10^0 \]
Numbers can be converted to scientific notation by the package. This is controlled by the scientific-notation option, which takes choices false, true, fixed and engineering. The fixed setting will use the exponent value by the fixed-exponent option. When engineering is set, the exponent is always a power of three.

\begin{verbatim}
\num{0.001} \ \% \\
\num{0.0100} \ \% \\
\num{1200} \ \% \\
\sisetup{scientific-notation = true} \% \\
\num{0.001} \ \% \\
\num{0.0100} \ \% \\
\num{1200} \ \% \\
\sisetup{scientific-notation = engineering} \% \\
\num{0.001} \ \% \\
\num{0.0100} \ \% \\
\num{1200} \ \%
\end{verbatim}

\begin{verbatim}
\sisetup{
fixed-exponent = 2,
scientific-notation = fixed,
}
\num{0.001} \ \% \\
\num{0.0100} \ \% \\
\num{1200} \\
0.001 \\
0.0100 \\
1200 \\
1 \times 10^{-3} \\
1.00 \times 10^{-2} \\
1.200 \times 10^3 \\
1 \times 10^{-3} \\
10.0 \times 10^{-3} \\
1.200 \times 10^3 \\
0.00001 \times 10^2 \\
0.000100 \times 10^2 \\
12.00 \times 10^2 \\
\end{verbatim}

5.6 Printing numbers

Actually printing numbers is controlled by a number of settings, which apply ideas such as differing decimal markers, digit grouping and so on. All of these options are concerned with the appearance of output, rather than the data it conveys. The options are summarised in Table 16.

Grouping digits into blocks of three is a common method to increase the ease of reading of numbers. The group-digits choice controls whether this behaviour applies, and takes the values true, false, decimal and integer. Grouping can be activated separately for the integer and decimal parts of a number using the appropriately-named values.
Table 16: Output options for numbers.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>bracket-negative-numbers</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>bracket-numbers</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>close-bracket</td>
<td>Literal</td>
<td>)</td>
</tr>
<tr>
<td>complex-root-position</td>
<td>Choice</td>
<td>after-number</td>
</tr>
<tr>
<td>copy-complex-root</td>
<td>Choice</td>
<td>false</td>
</tr>
<tr>
<td>copy-decimal-marker</td>
<td>Choice</td>
<td>false</td>
</tr>
<tr>
<td>exponent-base</td>
<td>Literal</td>
<td>10</td>
</tr>
<tr>
<td>exponent-product</td>
<td>Math</td>
<td>\times</td>
</tr>
<tr>
<td>group-digits</td>
<td>Choice</td>
<td>true</td>
</tr>
<tr>
<td>group-minimum-digits</td>
<td>integer</td>
<td>5</td>
</tr>
</tbody>
</table>
| group-separator | Math | \
| negative-color | Literal | \langle\text{none}\rangle |
| open-bracket | Literal | (|
| output-close-uncertainty | Literal | (|
| output-complex-root | Math | \text{\textit{i}} |
| output-decimal-marker | Math | . |
| output-exponent-marker | Literal | \langle\text{none}\rangle |
| output-open-uncertainty | Literal | (|
| separate-uncertainty | Switch | false |
| tight-spacing | Switch | false |
| uncertainty-separator | Math | \langle\text{none}\rangle |
\num{12345.67890} \\
\num[group-digits = false]{12345.67890} \\
\num[group-digits = decimal]{12345.67890} \\
\num[group-digits = integer]{12345.67890}

12 345.678 90
12345.67890
12345.678 90
12 345.67890

The separator used between groups of digits is stored by the group-separator option. This takes literal input and is used in math mode: for a text-mode full space use \text{-}.

\num{12345} \\
\num[group-separator = {,}]{12345} \\
\num[group-separator = \text{-}]{12345}

12345
12,345
12 345

Grouping is not always applied to smaller numbers, and the option group-minimum-digits is available to specify how many digits must be present before grouping is applied. The number of digits is considered separately for the integer and decimal parts of the number: grouping does not ‘cross the boundary’.

\num{1234} \\
\num[group-minimum-digits = 4]{1234} \\
\num{1234.5678} \\
\num[group-minimum-digits = 4]{1234.5678}

1234
1 234
1234.5678
1 234.567 8

The decimal marker used in output is set using the output-decimal-marker option. This can differ from the input marker, as can the root of $\sqrt{-1}$, which is stored in the output-complex-root option. The later is always in math mode, but the standard setting uses \text{\mathrm} to give an upright ‘i’: this can easily be altered. The complex root or decimal marker from the input can be used in the output by setting the copy-complex-root and copy-decimal-marker options, respectively.

\num{1.23} \\
\num[output-decimal-marker = {,}]{1.23} \\
\num[1+2i] \\
\num[output-complex-root = \text{\ensuremath{i}}]{1+2i} \\
\num[output-complex-root = j]{1+2i} \\
\num[copy-complex-root]{1+2j} \\
\num[copy-decimal-marker]{555,555}
1.23
1,23
1 + 2i
1 + 2\,i
1 + 2
1 + 2
555,555

complex-root-position The position of the complex root can be adjusted to place it either before or after the associated numeral in a complex number using the `complex-root-position` option.

\num{67-0.9i} \\n\num[complex-root-position = before-number]{67-0.9i} \\n\num[complex-root-position = after-number]{67-0.9i}

67 − 0.9i
67 − i0.9
67 − 0.9i

exponent-base The `exponent-base` and `exponent-product` options set the obvious parts of the output. Notice that the base is in the current mode, but the product sign is always in math mode.

\num[exponent-product = \times]{1e2} \\n\num[exponent-product = \cdot]{1e2} \\n\num[exponent-base = 2]{1e2}

1 \times 10^2
1 \cdot 10^2
1 \times 2^2

output-exponent-marker Alternatively, if the `output-exponent-marker` option is set then the value stored will be used in place of the normal product and base combination. This will normally be set up to ensure math or text mode.

\num[output-exponent-marker = \text{e}]{1e2} \\n\num[output-exponent-marker = \ensuremath{\mathrm{E}}]{1e2}

1e2
1E2

separate-uncertainty When input is given including an uncertainty in a number, it can be printed either with the uncertainty in brackets or as a separate number. This behaviour is controlled by the `separate-uncertainty` choice. If the uncertainty is given in brackets, a space may be added between the main number and the uncertainty: this is stored using the `uncertainty-separator` option. The opening and closing brackets used are stored in `output-open-uncertainty` and `output-close-uncertainty`, respectively.
\num{1.234(5)}
\num[separate-uncertainty = true]{1.234(5)}
\sisetup{
 output-open-uncertainty = [, ,
 output-close-uncertainty =],
 uncertainty-separator = {,}
}
\num{1.234(5)}
1.234
1.234 ± 0.005
1.234 [5]

Notice that \texttt{siunitx} correctly interprets uncertainties which cross the decimal marker position whether these are separated out or not.

8.2(13)
\num{8.2(13)}
8.2 ± 1.3
\num[separate-uncertainty]{8.2(13)}

\textbf{bracket-numbers} There are certain combinations of numerical input which can be ambiguous. This can be corrected by adding brackets in the appropriate place, and is controlled by the \texttt{bracket-numbers} switch. The opening and closing brackets used are stored in \texttt{open-bracket} and \texttt{close-bracket}, respectively. Note that \texttt{bracket-numbers} only applies to numbers without units: for numbers with units see the \texttt{multi-part-units} option.

\num{1+2i \times 10^{10}}
\num[bracket-numbers = false]{1+2i \times 10^{10}}
\sisetup{
 open-bracket = {, ,
 close-bracket = },
}
\num{1+2i \times 10^{10}}
(1 + 2i) \times 10^{10}
1 + 2i \times 10^{10}
(1 + 2i) \times 10^{10}

\textbf{negative-color} \texttt{siunitx} can detect negative mantissa values and alter print colour accordingly. This is disabled by setting the option to an empty value.

\num{-15673}
\num[-15673]{-15673}

\textbf{bracket-negative-numbers} A common means to display negative numbers in financial situations is to place them in brackets. This can be carried out automatically using the \texttt{bracket-negative-numbers} option.
Table 17: Multi-part number options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction-function</td>
<td>Macro</td>
<td>\frac</td>
</tr>
<tr>
<td>input-product</td>
<td>Literal</td>
<td>x</td>
</tr>
<tr>
<td>input-quotient</td>
<td>Literal</td>
<td>/</td>
</tr>
<tr>
<td>output-product</td>
<td>Math</td>
<td>\times</td>
</tr>
<tr>
<td>output-quotient</td>
<td>Math</td>
<td>/</td>
</tr>
<tr>
<td>quotient-mode</td>
<td>Choice</td>
<td>symbol</td>
</tr>
</tbody>
</table>

\begin{verbatim}
\num{-15673} \\n\num{[bracket-negative-numbers]{-15673} \\n\SI{-10}{\metre} \\n\SI{[bracket-negative-numbers]{-10}{\metre}

−15673
(15673)
−10 m
(10) m
\end{verbatim}

tight-spacing Under some circumstances is may be desirable to ‘squeeze’ the output spacing. This is turned on using the \texttt{tight-spacing} switch, which compresses spacing where possible.

\begin{verbatim}
\num{1 \pm 2i e3} \\n\num{[tight-spacing = true]{1 \pm 2i e3}

(1 ± 2i) \times 10^3
(1±2i)\times10^3
\end{verbatim}

5.7 Multi-part numbers

\texttt{siunitx} recognises the idea of products and quotients in numbers, both with and without units. These multi-part numbers have a number of options affecting how they are processed. The options are summarised in Table 17.

input-product The options \texttt{input-product} and \texttt{input-quotient} contain the tokens used to determine if a number contains multiple parts.

\begin{verbatim}
1 \times 2 \times 3
1 \times 10^4 \times 2(3) \times \frac{3}{4}
4 \times 5 \times 6
1/(2 \times 10^4)
1 \times 10^2/(3 \times 10^4)
\num{1 \times 2 \times 3} \\n\num{\leq 10^4 \times 2(3) \times \frac{3}{4}} \\n\num{4 \times 5 \times 6} \\n\num{[\texttt{input-product=*}]\{4 \times 5 \times 6\} \\n\num{1 / 2e4} \\n\num{1e2 / 3e4}
\end{verbatim}

output-product The symbols used for printing products and quotients are stored using the options \texttt{output-product} and \texttt{output-quotient}.
Table 18: Output options for lists and ranges of numbers.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-final-separator</td>
<td>Literal</td>
<td>\text{and}</td>
</tr>
<tr>
<td>list-separator</td>
<td>Literal</td>
<td>,</td>
</tr>
<tr>
<td>range-phrase</td>
<td>Literal</td>
<td>\text{to}</td>
</tr>
</tbody>
</table>

\num{[output-product = \cdot]{4.87 \times 5.321 \times 6.90545}} \quad \num{[output-quotient = \text{ div }]{1 / 2}}

\num{1 \div 2}

\num{1 / 2e4} \quad \num{[quotient-mode = \text{fraction}]{1 / 2e4}}

1 \div (2 \times 10^4)

\num{1 / 1} \quad \num{[fraction-function = \dfrac]{1 / 2}} \quad \num{[fraction-function = \sfrac]{1 / 3}} \quad \num{[fraction-function = \tfrac]{1 / 4}}

\sfrac{1}{2} \quad \sfrac{1}{3} \quad \sfrac{1}{4}

\sisetup{quotient-mode = \text{fraction}}

\num{1 / 1} \quad \num{[fraction-function = \dfrac]{1 / 2}} \quad \num{[fraction-function = \sfrac]{1 / 3}} \quad \num{[fraction-function = \tfrac]{1 / 4}}

\textbf{5.8 Lists and ranges of numbers}

Lists and ranges of numbers have a small number of specialised options, which apply to these more unusual input forms (Table 18).

\textbf{list-final-separator} \quad \textbf{list-separator} \quad \text{Lists of numbers are printed with a separator between each item, which is stored using}

\textbf{quotient-mode} \quad \text{For quotients, there is the possibility to print output either using a slash, or using the \texttt{\frac} macro. This is controlled by the \texttt{quotient} choice option, which takes values \texttt{symbol} and \texttt{fraction}.}

\textbf{fraction-function} \quad \text{The function used when \texttt{quotient} = \texttt{fraction} is set is determined by the \texttt{fraction} option. This should be set to a function which takes two arguments, and presumably creates some type of fraction. Most alternatives to the standard \texttt{\frac} function will involve loading additional packages: the demonstrations here need \texttt{amsmath} and \texttt{xfrac}.}^4

^4\text{If} \texttt{xfrac} \text{is not available when typesetting this document, the demonstration of \texttt{\sfrac} \text{will have the wrong appearance.}
Table 19: Angle options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-arc-degree-zero</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>add-arc-minute-zero</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>add-arc-second-zero</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>angle-symbol-over-decimal</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>arc-separator</td>
<td>Math</td>
<td>false</td>
</tr>
<tr>
<td>number-angle-product</td>
<td>Math</td>
<td>⟨empty⟩</td>
</tr>
</tbody>
</table>

The list-separator option. The separator before the last item of a list may be different, and is therefore set using the list-final-separator option. Any spaces needed should be included in the option settings: none are added within the code. These two items are printed in text mode.

\[
\text{\texttt{numlist}}\{0.1;0.2;0.3\} \quad \text{\texttt{\textbackslash numlist}}[\text{list-separator} = {; }]{0.1;0.2;0.3} \quad \text{\texttt{\textbackslash numlist}}[\text{list-final-separator} = {, }]{0.1;0.2;0.3} \quad \text{\texttt{\textbackslash numlist}}[\text{list-separator} = \{ \text{and } \}, \text{list-final-separator} = \{ \text{and finally } \}]{0.1;0.2;0.3}
\]

0.1, 0.2 and 0.3
0.1; 0.2 and 0.3
0.1, 0.2, 0.3
0.1 and 0.2 and finally 0.3

range-phrase Ranges of numbers can be given as input. These will have an appropriate word or symbol inserted between the two entries: this is stored using the range-phrase option. The phrase should include any necessary spaces: no extra space is added.

\[
\text{\texttt{\textbackslash numrange}}\{5\}{100} \quad \text{\texttt{\textbackslash numrange}}[\text{range-phrase} = --]{5\}{100}
\]

5 to 100
5–100

5.9 Angles

Angle processing provided by the \ang function has a set of options which apply in addition to the general ones set up for number processing (Table 19).

number-angle-product The separator between the number and angle symbol (degrees, minutes or seconds) can be set using the number-angle-product option, independent of the related number-unit-product option used by the \SI function.

\[
\text{\texttt{\textbackslash ang}}\{2.67\} \quad \text{\texttt{\textbackslash ang}}[\text{number-angle-product} = \{\},\]{2.67}
\]

2.67°
2.67°
When angles are printed in arc format, the separation of the different parts is set up using the \texttt{arc-separator} option.

\begin{verbatim}
6°7′6.5″ \ang{6;7;6.5} \ang[arc-separator = ,]{6;7;6.5}
\end{verbatim}

Zero-filling for the degree, minute or second parts of an arc is controlled using the \texttt{add-arc-degree-zero}, \texttt{add-arc-minute-zero} and \texttt{add-arc-second-zero} options. All are off as standard.

\begin{verbatim}
-1° \ang{-1;;} \ang{-1;;} \ang{-1;;}
-2′ \ang{-2;} \ang{-2;} \ang{-2;}
-3″ \ang{-3} \ang{-3} \ang{-3}
-1° \ang{-1;;} \ang{-1;;} \ang{-1;;}
-0°2′ \ang{-2;} \ang{-2;} \ang{-2;}
-0°3″ \ang{-3} \ang{-3} \ang{-3}
-1°0′ \ang{-1;;} \ang{-1;;} \ang{-1;;}
-0°2′ \ang{-2;} \ang{-2;} \ang{-2;}
-0°0′0″ \ang{-0;0} \ang{-0;0} \ang{-0;0}
-0°0′3″ \ang{-0;3} \ang{-0;3} \ang{-0;3}
\end{verbatim}

In some subject areas, most notably astronomy, the angle symbols are given over the decimal marker, rather than at the end of the number. This behaviour is available using the \texttt{angle-symbol-over-decimal} option.

\begin{verbatim}
\ang{45.697} \ang{6;7;6.5} \ang[angle-symbol-over-decimal]{45.697} \ang[angle-symbol-over-decimal]{6;7;6.5}
\end{verbatim}

\textbf{5.10 Creating units}

The various macro units are created at the start of the document. \texttt{siunitx} can define these such that they are only available for use within the \texttt{\ang} and \texttt{\SI} functions, or can make the unit macros available throughout the document body. There are a number of settings which control this creation process (Table 20). As a result, these options all apply in the preamble only.
Table 20: Unit creation options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>free-standing-units</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>overwrite-functions</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>space-before-unit</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>unit-optional-argument</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>use-xspace</td>
<td>Switch</td>
<td>false</td>
</tr>
</tbody>
</table>

The `free-standing-units` option controls whether the unit macros exist outside of the \si and \SI arguments. When this option is true, \siunitx creates the macros for general use. The standard method to achieve this does not overwrite any existing macros: this behaviour can be altered using the `overwrite-functions` switch.

When ‘free standing’ unit macros are created, their behaviour can be adjusted by a number of options. These are mainly intended for emulating the input syntax of older packages. The option `unit-optional-argument` gives the same behaviour for the inputs

\SI{10}{\metre}

and

\metre[10].

The `space-before-unit` and `use-xspace` options control the behaviour at the ‘ends’ of the unit macros. Activating `space-before-unit` inserts the number–unit space before the unit is printed. This is suitable for the input syntax

30\metre

but does mean that the unit macros are incorrectly spaced in running text. On the other hand, the `use-xspace` option attempts to correctly space input such as

\metre is the symbol for metres.

5.11 Loading additional units

As standard, \siunitx loads a set of abbreviated versions of the SI units (Table 21). The standard \siunitx settings only create these abbreviations within the scope of the \si and \SI functions, meaning that no clashes should occur (for example with the standard \pm symbol). Loading of these abbreviations can be prevented by setting the option `abbreviations = false` in the preamble.
Table 21: Abbreviated units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>femtogram</td>
<td>(\text{fg})</td>
<td>(\text{fg})</td>
</tr>
<tr>
<td>picogram</td>
<td>(\text{pg})</td>
<td>(\text{pg})</td>
</tr>
<tr>
<td>nanogram</td>
<td>(\text{ng})</td>
<td>(\text{ng})</td>
</tr>
<tr>
<td>microgram</td>
<td>(\text{µg})</td>
<td>(\text{µg})</td>
</tr>
<tr>
<td>milligram</td>
<td>(\text{mg})</td>
<td>(\text{mg})</td>
</tr>
<tr>
<td>gram</td>
<td>(\text{g})</td>
<td>(\text{g})</td>
</tr>
<tr>
<td>kilogram</td>
<td>(\text{kg})</td>
<td>(\text{kg})</td>
</tr>
<tr>
<td>atomic mass unit</td>
<td>(\text{amu})</td>
<td>(\text{u})</td>
</tr>
<tr>
<td>picometre</td>
<td>(\text{pm})</td>
<td>(\text{pm})</td>
</tr>
<tr>
<td>nanometre</td>
<td>(\text{nm})</td>
<td>(\text{nm})</td>
</tr>
<tr>
<td>micrometre</td>
<td>(\text{µm})</td>
<td>(\text{µm})</td>
</tr>
<tr>
<td>millimetre</td>
<td>(\text{mm})</td>
<td>(\text{mm})</td>
</tr>
<tr>
<td>centimetre</td>
<td>(\text{cm})</td>
<td>(\text{cm})</td>
</tr>
<tr>
<td>decimetre</td>
<td>(\text{dm})</td>
<td>(\text{dm})</td>
</tr>
<tr>
<td>metre</td>
<td>(\text{m})</td>
<td>(\text{m})</td>
</tr>
<tr>
<td>kilometre</td>
<td>(\text{km})</td>
<td>(\text{km})</td>
</tr>
<tr>
<td>attosecond</td>
<td>(\text{as})</td>
<td>(\text{as})</td>
</tr>
<tr>
<td>femtosecond</td>
<td>(\text{fs})</td>
<td>(\text{fs})</td>
</tr>
<tr>
<td>picosecond</td>
<td>(\text{ps})</td>
<td>(\text{ps})</td>
</tr>
<tr>
<td>nanosecond</td>
<td>(\text{ns})</td>
<td>(\text{ns})</td>
</tr>
<tr>
<td>microsecond</td>
<td>(\text{µs})</td>
<td>(\text{µs})</td>
</tr>
<tr>
<td>millisecond</td>
<td>(\text{ms})</td>
<td>(\text{ms})</td>
</tr>
<tr>
<td>second</td>
<td>(\text{s})</td>
<td>(\text{s})</td>
</tr>
<tr>
<td>femtomole</td>
<td>(\text{fmol})</td>
<td>(\text{fmol})</td>
</tr>
<tr>
<td>picomole</td>
<td>(\text{pmol})</td>
<td>(\text{pmol})</td>
</tr>
<tr>
<td>nanomole</td>
<td>(\text{nmol})</td>
<td>(\text{nmol})</td>
</tr>
<tr>
<td>micromole</td>
<td>(\text{µmol})</td>
<td>(\text{µmol})</td>
</tr>
<tr>
<td>millimole</td>
<td>(\text{mmol})</td>
<td>(\text{mmol})</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mole</td>
<td>(\text{mol})</td>
<td>mol</td>
</tr>
<tr>
<td>kilomole</td>
<td>(\text{kmol})</td>
<td>kmol</td>
</tr>
<tr>
<td>picoampere</td>
<td>(\text{pA})</td>
<td>pA</td>
</tr>
<tr>
<td>nanoampere</td>
<td>(\text{nA})</td>
<td>nA</td>
</tr>
<tr>
<td>microampere</td>
<td>(\text{µA})</td>
<td>µA</td>
</tr>
<tr>
<td>milliampere</td>
<td>(\text{mA})</td>
<td>mA</td>
</tr>
<tr>
<td>ampere</td>
<td>(\text{A})</td>
<td>A</td>
</tr>
<tr>
<td>kiloampere</td>
<td>(\text{kA})</td>
<td>kA</td>
</tr>
<tr>
<td>microlitre</td>
<td>(\text{µl})</td>
<td>µl</td>
</tr>
<tr>
<td>millilitre</td>
<td>(\text{mL})</td>
<td>mL</td>
</tr>
<tr>
<td>litre</td>
<td>(\text{l})</td>
<td>l</td>
</tr>
<tr>
<td>hectolitre</td>
<td>(\text{hL})</td>
<td>hL</td>
</tr>
<tr>
<td>microliter</td>
<td>(\text{µL})</td>
<td>µL</td>
</tr>
<tr>
<td>milliliter</td>
<td>(\text{mL})</td>
<td>mL</td>
</tr>
<tr>
<td>liter</td>
<td>(\text{L})</td>
<td>L</td>
</tr>
<tr>
<td>hectoliter</td>
<td>(\text{hL})</td>
<td>hL</td>
</tr>
<tr>
<td>millihertz</td>
<td>(\text{mHz})</td>
<td>mHz</td>
</tr>
<tr>
<td>hertz</td>
<td>(\text{Hz})</td>
<td>Hz</td>
</tr>
<tr>
<td>kilohertz</td>
<td>(\text{kHz})</td>
<td>kHz</td>
</tr>
<tr>
<td>megahertz</td>
<td>(\text{MHz})</td>
<td>MHz</td>
</tr>
<tr>
<td>gigahertz</td>
<td>(\text{GHz})</td>
<td>GHz</td>
</tr>
<tr>
<td>terahertz</td>
<td>(\text{THz})</td>
<td>THz</td>
</tr>
<tr>
<td>newton</td>
<td>(\text{N})</td>
<td>N</td>
</tr>
<tr>
<td>millinewton</td>
<td>(\text{mN})</td>
<td>mN</td>
</tr>
<tr>
<td>kilonewton</td>
<td>(\text{kN})</td>
<td>kN</td>
</tr>
<tr>
<td>Meganewton</td>
<td>(\text{MN})</td>
<td>MN</td>
</tr>
<tr>
<td>pascal</td>
<td>(\text{Pa})</td>
<td>Pa</td>
</tr>
<tr>
<td>kilopascal</td>
<td>(\text{kPa})</td>
<td>kPa</td>
</tr>
<tr>
<td>megapascal</td>
<td>(\text{MPa})</td>
<td>MPa</td>
</tr>
<tr>
<td>gigapascal</td>
<td>(\text{GPa})</td>
<td>GPa</td>
</tr>
<tr>
<td>milliohm</td>
<td>(\text{mΩ})</td>
<td>mΩ</td>
</tr>
<tr>
<td>kilohm</td>
<td>(\text{kΩ})</td>
<td>kΩ</td>
</tr>
<tr>
<td>megohm</td>
<td>(\text{MΩ})</td>
<td>MΩ</td>
</tr>
</tbody>
</table>
Continued from previous page

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>picovolt</td>
<td>pV</td>
<td>pV</td>
</tr>
<tr>
<td>nanovolt</td>
<td>nV</td>
<td>nV</td>
</tr>
<tr>
<td>microvolt</td>
<td>μV</td>
<td>μV</td>
</tr>
<tr>
<td>millivolt</td>
<td>mV</td>
<td>mV</td>
</tr>
<tr>
<td>volt</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>kilovolt</td>
<td>kV</td>
<td>kV</td>
</tr>
<tr>
<td>watt</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>microwatt</td>
<td>μW</td>
<td>μW</td>
</tr>
<tr>
<td>milliwatt</td>
<td>mW</td>
<td>mW</td>
</tr>
<tr>
<td>kilowatt</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>megawatt</td>
<td>MW</td>
<td>MW</td>
</tr>
<tr>
<td>gigawatt</td>
<td>GW</td>
<td>GW</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>kilojoule</td>
<td>kJ</td>
<td>kJ</td>
</tr>
<tr>
<td>electronvolt</td>
<td>eV</td>
<td>eV</td>
</tr>
<tr>
<td>millielectronvolt</td>
<td>meV</td>
<td>meV</td>
</tr>
<tr>
<td>kiloelectronvolt</td>
<td>keV</td>
<td>keV</td>
</tr>
<tr>
<td>megar electronvolt</td>
<td>MeV</td>
<td>MeV</td>
</tr>
<tr>
<td>gigaelectronvolt</td>
<td>GeV</td>
<td>GeV</td>
</tr>
<tr>
<td>teraelectronvolt</td>
<td>T eV</td>
<td>TeV</td>
</tr>
<tr>
<td>kilowatt hour</td>
<td>kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>farad</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>femtofarad</td>
<td>fF</td>
<td>fF</td>
</tr>
<tr>
<td>picofarad</td>
<td>pF</td>
<td>pF</td>
</tr>
<tr>
<td>kelvin</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>decibel</td>
<td>dB</td>
<td>dB</td>
</tr>
</tbody>
</table>

Binary data is expressed in units of bits and bytes. These are normally given prefixes which use powers of two, rather than the powers of ten used by the SI prefixes. As these binary prefixes are closely related to the SI prefixes, they are defined by `siunitx` but do have to be loaded using `binary-units = true` (or simply `binary-units`) (Table 22). The units `\bit` and `\byte` are then also available.

\SI{100}{\mebi\byte} \\n\SI[prefixes-as-symbols=false]{30}{\kibi\bit}

100 MiB
30 \times 2^{10} \text{ bit}

version-1-compatibility A configuration file is also included which will use settings and define mac-
Table 22: Binary prefixes.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Macro</th>
<th>Symbol</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>kibi</td>
<td>\kibi</td>
<td>Ki</td>
<td>10</td>
</tr>
<tr>
<td>mebi</td>
<td>\mebi</td>
<td>Mi</td>
<td>20</td>
</tr>
<tr>
<td>gibi</td>
<td>\gibi</td>
<td>Gi</td>
<td>30</td>
</tr>
<tr>
<td>tebi</td>
<td>\tebi</td>
<td>Ti</td>
<td>40</td>
</tr>
<tr>
<td>pebi</td>
<td>\pebi</td>
<td>Pi</td>
<td>50</td>
</tr>
<tr>
<td>exbi</td>
<td>\exbi</td>
<td>Ei</td>
<td>60</td>
</tr>
<tr>
<td>zebi</td>
<td>\zebi</td>
<td>Zi</td>
<td>70</td>
</tr>
<tr>
<td>yobi</td>
<td>\yobi</td>
<td>Yi</td>
<td>80</td>
</tr>
</tbody>
</table>

ros as defined by version 1 of \texttt{siunitx}: this can be accessed with the option \texttt{version-1-compatibility}. This is intended to allow easy transition to version 2: users should update their source to use the new interfaces and functions.

Users upgrading from version 1 of \texttt{siunitx} will notice that the various ‘specialist’ units available in version 1 are no longer provided as loadable options.\footnote{They are included in the loaded configuration file \texttt{version-1}, but this is intended purely to ease transition to version 2.} These are not included in version 2 as the criteria for inclusion of such units are far from clear, and it is difficult to justify providing clearly non-SI units in the package. For reference, appropriate definitions for the units which were provided in version 1 are as follows.

\begin{verbatim}
% Astronomy
\DeclareSIUnit{parsec}{pc}
\DeclareSIUnit{lightyear}{ly}

% Chemical engineering
\DeclareSIUnit{g mol}{g\text{-}mol}
\DeclareSIUnit{kg mol}{kg\text{-}mol}
\DeclareSIUnit{lb mol}{lb\text{-}mol}

% Chemistry
\DeclareSIUnit{molar}{\textsc{m}}
\DeclareSIUnit{Molar}{\textsc{m}}
\DeclareSIUnit{torr}{torr}

% Geophysics
\DeclareSIUnit{gon}{gon}

% High energy physics
\DeclareSIUnit{micron}{\micro\text{m}}
\DeclareSIUnit{mrad}{\text{m}\text{r}}
\DeclareSIUnit{gauss}{G}
\DeclareSIUnit{eV perc}{eV\text{p}}
\DeclareSIUnit{nanobarn}{\nano\text{b}}
\end{verbatim}
Table 23: Unit output options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>bracket-unit-denominator</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>forbid-literal-units</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>literal-superscript-as-power</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>inter-unit-product</td>
<td>Math</td>
<td>,</td>
</tr>
<tr>
<td>parse-units</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>forbid-literal-units</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>literal-superscript-as-power</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>inter-unit-product</td>
<td>Math</td>
<td>,</td>
</tr>
<tr>
<td>per-mode</td>
<td>Choice</td>
<td>reciprocal</td>
</tr>
<tr>
<td>per-symbol</td>
<td>Math</td>
<td>/</td>
</tr>
<tr>
<td>power-font</td>
<td>Choice</td>
<td>number</td>
</tr>
<tr>
<td>prefixes-as-symbols</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>qualifier-mode</td>
<td>Choice</td>
<td>subscript</td>
</tr>
<tr>
<td>sticky-per</td>
<td>Switch</td>
<td>false</td>
</tr>
</tbody>
</table>

\DeclareSIUnit{picobarn}{\pico\barn}
\DeclareSIUnit{femtobarn}{\femto\barn}
\DeclareSIUnit{attobarn}{\atto\barn}
\DeclareSIUnit{zeptobarn}{\zepto\barn}
\DeclareSIUnit{yoctobarn}{\yocto\barn}
\DeclareSIUnit{nb}{\nano\barn}
\DeclareSIUnit{pb}{\pico\barn}
\DeclareSIUnit{fb}{\femto\barn}
\DeclareSIUnit{ab}{\atto\barn}
\DeclareSIUnit{zb}{\zepto\barn}
\DeclareSIUnit{yb}{\yocto\barn}

Users can use a local configuration file to make additional units available on a local basis, as described in Section 5.17.

5.12 Using units

Part of the power of \texttt{siunitx} is the ability to alter the output format for units without changing the input. The behaviour of units is therefore controlled by a number of options which alter either the processing of units or the output directly (Table 23).

\texttt{forbid-literal-units} Some users may prefer to completely disable the use of literal input in units, for example to enforce consistency. This can be accomplished by setting the \texttt{forbid-literal-units} switch. With this option enabled, only macro-based units can be used in a document.

\texttt{inter-unit-product} The separator between each unit is stored using the \texttt{inter-unit-product} option. The standard setting is a thin space: another common choice is a centred dot. To get the correct spacing it is necessary to use \{\texttt{cdotp}\} in the latter case.
The handling of \(\per\) is altered using the \texttt{per-mode} choice option. The standard setting is reciprocal, meaning that \(\per\) generates reciprocal powers for units. Setting the option to \texttt{fraction} uses the \texttt{\frac} function to typeset the positive and negative powers of a unit separately.

\[
\begin{align*}
\si{\joule\per\mole\per\kelvin} & \quad \si{\metre\per\second\squared} \\
\si[\texttt{per-mode=fraction}]{\joule\per\mole\per\kelvin} & \quad \si[\texttt{per-mode=fraction}]{\metre\per\second\squared}
\end{align*}
\]

\begin{align*}
J \text{ mol}^{-1} \text{ K}^{-1} \\
m \text{ m}^{-2}
\end{align*}

The closely-related \texttt{reciprocal-positive-first} setting acts in the same way but places all of the positive powers before any negative ones.

\[
\begin{align*}
\si{\ampere\per\mole\second} & \quad \si[\texttt{per-mode=reciprocal-positive-first}]\{\ampere\per\mole\second\}
\end{align*}
\]

\begin{align*}
A \text{ mol}^{-1} \text{ s} \\
A \text{ smol}^{-1}
\end{align*}

It is possible to use a symbol (usually \(\div\)) to separate the two parts of a unit by setting \texttt{per-mode} to \texttt{symbol}; the symbol used is stored using the setting \texttt{per-symbol}. This method for displaying units can be ambiguous, and so brackets are added unless \texttt{bracket-unit-denominator} is set to \texttt{false}. Notice that \texttt{bracket-unit-denominator} only applies when \texttt{per-mode} is set to \texttt{symbol} or \texttt{symbol-or-fraction}. The output for \texttt{per-symbol} is always made in math mode, and so \texttt{\text} will be needed to print textual information.

\[
\begin{align*}
\texttt{\sisetup{per-mode = symbol}} \\
\si{\joule\per\mole\per\kelvin} & \quad \si{\metre\per\second\squared} \\
\si[\texttt{per-symbol = \text{-div-}}]{\joule\per\mole\per\kelvin} & \quad \si[\texttt{bracket-unit-denominator = false}]{\joule\per\mole\per\kelvin}
\end{align*}
\]

\begin{align*}
J/(\text{mol K}) \\
\text{m/s}^2 \\
J \text{ div (mol K)} \\
J/\text{mol K}
\end{align*}
The often-requested (but mathematically invalid) \texttt{repeated-symbol} option is also available to repeat the symbol for each \texttt{per}.

\begin{verbatim}
\si[per-mode=repeated-symbol]{\joule\per\mole\per\kelvin}
J/mol/K
\end{verbatim}

Finally, it is possible for the behaviour of the \texttt{per} function to depend on the prevailing math style. Setting \texttt{per-mode} to \texttt{symbol-or-fraction} will use the symbol setting for in line math, and the fraction setting when used in \texttt{displaystyle} math.

\begin{verbatim}
\sisetup{per-mode = symbol-or-fraction}
%
(\si{\joule\per\mole\per\kelvin})
(\textstyle \si{\joule\per\mole\per\kelvin})
(\displaystyle \si{\joule\per\mole\per\kelvin})
J/(molK)
J/(mol K)
\[
\frac{J}{mol \, K}
\]
\end{verbatim}

\textbf{sticky-per} By default, \texttt{per} applies only to the next unit given.6 By setting the \texttt{sticky-per} flag, this behaviour is changed so that \texttt{per} applies to all subsequent units.

\begin{verbatim}
\si{\pascal\per\gray\henry} \quad \si[sticky-per]{\pascal\per\gray\henry}
Pa Gy$^{-1}$ H
Pa Gy$^{-1}$ H$^{-1}$
\end{verbatim}

\textbf{power-font} The font used for the powers in units can be typeset using the current number or unit font. This may be of use when the font used for numbers and units are very different, for example when the \texttt{euler} package is loaded.

\begin{verbatim}
\si{\metre\per\second\squared} \quad \si[\texttt{power-font = unit}]{\metre\per\second\squared}
ms$^{-2}$
ms$^{-2}$
\end{verbatim}

6This is the standard method of reading units in English: for example, \texttt{J mol$^{-1}$ K$^{-1}$} is pronounced ‘joules per mole per kelvin’.
When printing units in ‘literal’ mode, it is possible that simply printing superscripts ‘as is’ may lead to poor appearance for the numbers. This is most likely if the text font of the document uses old style (lower case) numerals, but the math font uses lining (upper case) numerals. It is therefore possible to treat superscripts within literal units as powers, and thus for the power-font option to apply within these literal units. This behaviour is controlled using the literal-superscript-as-power switch.

\si{m.s^{-2}} \quad \si[literal-superscript-as-power = false]{m.s^{-2}}

\textbf{qualifier-mode} Unit qualifiers can be printed in three different formats, set by the qualifier-mode option. The standard setting is subscript, while the options brackets, space and text are also possible. With the last settings, powers can lead to ambiguity and are automatically detected and brackets added as appropriate.

\si{\kilogram\polymer\squared\per\mole\catalyst\per\hour} \quad \si[qualifier-mode = brackets]{\kilogram\polymer\squared\per\mole\catalyst\per\hour} \quad \si[qualifier-mode = subscript]{\kilogram\polymer\squared\per\mole\catalyst\per\hour} \quad \si[qualifier-mode = space]{\kilogram\polymer\squared\per\mole\catalyst\per\hour} \quad \si[qualifier-mode = text]{\deci\bel\isotropic}

\textbf{prefixes-as-symbols} The unit prefixes (\texttt{kilo}, etc.) are normally given as letters. However, the package can convert these into numerical powers. This is controlled by the prefixes-as-symbols switch option. This correctly deals with the kilogram, which is a base unit even though it involves a prefix.

\si{\milli\litre\per\mole\deci\ampere} \quad \SI{10}{\kilo\gram\squared\deci\second} \quad \si[prefixes-as-symbols=false]{\milli\litre\per\mole\deci\ampere} \quad \SI[prefixes-as-symbols=false]{10}{\kilo\gram\squared\deci\second}

\text{ml mol}^{-1}\text{dA} \quad \text{10 kg}^2\text{ds} \quad 10^{-4}\text{mol}^{-1}\text{A} \quad 10 \times 10^{-1}\text{kg}^2\text{s}
Table 24: Options for numbers with units.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow-number-unit-breaks</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>list-units</td>
<td>Choice</td>
<td>repeat</td>
</tr>
<tr>
<td>multi-part-units</td>
<td>Choice</td>
<td>brackets</td>
</tr>
<tr>
<td>number-unit-product</td>
<td>Math</td>
<td>,</td>
</tr>
<tr>
<td>product-units</td>
<td>Choice</td>
<td>repeat</td>
</tr>
<tr>
<td>range-units</td>
<td>Choice</td>
<td>repeat</td>
</tr>
</tbody>
</table>

Normally, `siunitx` is used with the unit parse enabled, and only prints units directly if there is literal input. However, if the input is known to be essentially consistent and high performance is desired, then the parser can be turned off using the `parse-units` switch.

\SI{300}{\MHz} \quad \SI{300}{\MHz} \quad \SI{parse-units = false}{300}{\MHz}

5.13 Numbers with units

Some options apply to the combination of units and numbers, rather than to units or numbers alone (Table 24).

allow-number-unit-breaks

Usually, the combination of a number and unit is regarded as a single mathematical entity which should not be split across lines. However, there are cases (very long units, narrow columns, etc.) where breaks may be needed. This can be turned on using the `allow-number-unit-breaks` option.

\begin{minipage}{2.55 cm}
% Gives an underfull hbox
Some filler text \SI{10}{\metre} \quad \sisetup{allow-number-unit-breaks} Some filler text \SI{10}{\metre} \\
\end{minipage}

number-unit-product

The product symbol between the number and unit is set using the `number-unit-product` option. This is always printed in math mode, and so anything which must be printed as text should be placed inside a `\text` macro.

\SI{2.67}{\farad} \quad \SI{2.67}{\text{-}}{\farad} \quad \SI{2.67}{\text{\{\farad}}

2.67 F
2.67 F
2.67 F

% Gives an underfull hbox
When a number has multiple parts (such as a separate uncertainty) then the unit must apply to all parts of the number. How this is shown is controlled using the \texttt{multi-part-units} options. The standard setting is \texttt{brackets}, which will place the entire numerical part in brackets and use a single unit symbol. Alternative options are \texttt{repeat} (print the unit for each part of the number) and \texttt{single} (print only one unit symbol: mathematically incorrect).

\begin{verbatim}
\sisetup{separate-uncertainty}
\SI{12.3(4)}{\kilo\gram} \\
\SI[multi-part-units = brackets]{12.3(4)}{\kilo\gram} \\
\SI[multi-part-units = repeat]{12.3(4)}{\kilo\gram} \\
\SI[multi-part-units = single]{12.3(4)}{\kilo\gram}
\end{verbatim}

(12.3 ± 0.4) kg
(12.3 ± 0.4) kg
12.3 kg ± 0.4 kg
12.3 ± 0.4 kg

It is important to notice that numbers with units are not affected by the setting of \texttt{bracket-numbers}, which applies to ‘pure’ numbers only. For example:

\begin{verbatim}
\sisetup{separate-uncertainty,bracket-numbers = false}
\num{1.234(5)e-4} \\
\SI{1.234(5)e-4}{\metre}
\end{verbatim}

1.234 ± 0.005 × 10^{-4}
(1.234 ± 0.005) × 10^{-4} m

The reason is that the requirements to bracket values with units are fundamentally different from those for numbers alone. Some combinations which are mathematically valid in the absence of a unit become invalid when a unit is present.

When a product of quantities is given, the resulting units can be displayed in a number of ways, set using the \texttt{product-units} option. The standard setting is \texttt{repeat}, which prints one unit symbol for each numbers. Alternatives are \texttt{brackets}, \texttt{brackets-power}, \texttt{power}, \texttt{repeat} and \texttt{single}. This option does not affect the application of brackets for each number within the product list: it only sets those around the entire list.

\begin{verbatim}
\SI{2 x 3 x 4}{\metre} \\
\SI[product-units = brackets]{2 x 3 x 4}{\metre} \\
\SI[product-units = brackets-power]{2 x 3 x 4}{\metre} \\
\SI[product-units = power]{2 x 3 x 4}{\metre} \\
\SI[product-units = repeat]{2 x 3 x 4}{\metre} \\
\SI[product-units = single]{2 x 3 x 4}{\metre}
\end{verbatim}

2 m × 3 m × 4 m
(2 × 3 × 4) m
(2 × 3 × 4) m³
2 × 3 × 4 m³
2 m × 3 m × 4 m
2 × 3 × 4 m
The `list-units` and `range-units` options determine how the `\SIlist` and `\SIrange` functions display units, respectively. The standard setting for both is `repeat`, where each number will be printed with a unit. Alternatives are `brackets` and `single`. Any brackets needed on individual numbers within a product are controlled by the `brackets-numbers` option (i.e. they are treated as pure numbers). These options do not affect the application of brackets for each number within the list or range: they only set those around the entire group.

\begin{verbatim}
\SIlist{2;4;6;8}{\tesla} \\n\SIlist[list-units = brackets]{2;4;6;8}{\tesla} \\n\SIlist[list-units = repeat]{2;4;6;8}{\tesla} \\n\SIlist[list-units = single]{2;4;6;8}{\tesla} \\n\SIrange{2}{4}{\degreeCelsius} \\n\SIrange[range-units = brackets]{2}{4}{\degreeCelsius} \\n\SIrange[range-units = repeat]{2}{4}{\degreeCelsius} \\n\SIrange[range-units = single]{2}{4}{\degreeCelsius}
\end{verbatim}

2 T, 4 T, 6 T and 8 T
(2, 4, 6 and 8) T

2 T, 4 T, 6 T and 8 T
2, 4, 6 and 8 T

2 °C to 4 °C
(2 to 4) °C

2 °C to 4 °C
2 to 4 °C

5.14 Tabular material

Processing of material in tables obeys the same settings as described for the functions already described. However, there are some settings which apply only to the layout of tabular material (Table 25).

The main use of the `S` column is to control the alignment of the resulting output. However, it is possible to turn off alignment entirely and only use the number parser of `siunitx`. This is achieved using the `table-parse-only` switch, as illustrated in Table 26.

\begin{verbatim}
\begin{table}
\centering
\caption{Parsing without aligning in an `\texttt{S}` column.}
\label{tab:S:parse}
\begin{tabular}{S[table-parse-only]}
\toprule
\{Decimal-centred\} & \{Simple centring\} \\midrule
\end{tabular}
\end{table}
\end{verbatim}
Table 25: Options for tabular material.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>table-align-comparator</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-align-exponent</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-align-text-pre</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-align-text-post</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-align-uncertainty</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-alignment</td>
<td>Choice</td>
<td>⟨none⟩</td>
</tr>
<tr>
<td>table-auto-round</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>table-column-width</td>
<td>Length</td>
<td>0 pt</td>
</tr>
<tr>
<td>table-comparator</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>table-figures-decimal</td>
<td>Integer</td>
<td>2</td>
</tr>
<tr>
<td>table-figures-exponent</td>
<td>Integer</td>
<td>0</td>
</tr>
<tr>
<td>table-figures-integer</td>
<td>Integer</td>
<td>3</td>
</tr>
<tr>
<td>table-figures-uncertainty</td>
<td>Integer</td>
<td>0</td>
</tr>
<tr>
<td>table-format</td>
<td>Special</td>
<td>⟨none⟩</td>
</tr>
<tr>
<td>table-number-alignment</td>
<td>Choice</td>
<td>center-decimal-marker</td>
</tr>
<tr>
<td>table-parse-only</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>table-omit-exponent</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>table-space-text-pre</td>
<td>Literal</td>
<td>⟨empty⟩</td>
</tr>
<tr>
<td>table-space-text-post</td>
<td>Literal</td>
<td>⟨empty⟩</td>
</tr>
<tr>
<td>table-sign-exponent</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>table-sign-mantissa</td>
<td>Switch</td>
<td>false</td>
</tr>
<tr>
<td>table-text-alignment</td>
<td>Choice</td>
<td>center</td>
</tr>
<tr>
<td>table-unit-alignment</td>
<td>Choice</td>
<td>center</td>
</tr>
</tbody>
</table>
Table 26: Parsing without aligning in an \texttt{S} column.

\begin{table}
\centering
\sisetup{
 table-figures-integer = 2,
 table-figures-decimal = 4
}
\begin{tabular}{S S[S[table-number-alignment = center] S[S[table-number-alignment = left] S[S[table-number-alignment = right]}
\toprule
\{Some Values\} & \{Some Values\} & \{Some Values\} & \{Some Values\} \\
\midrule
2.3456 & 2.3456 & 2.3456 & 2.3456 \\
34.2345 & 34.2345 & 34.2345 & 34.2345 \\
\bottomrule
\end{tabular}
\caption{Aligning the \texttt{S} column.}
\label{tab:S:align}
\end{table}

\textbf{table-number-alignment} The alignment of numbers with the boundaries of the \texttt{S} column is controlled using the \texttt{table-number-alignment} option, which takes the values \texttt{center-decimal-marker}, \texttt{center}, \texttt{left} and \texttt{right}. The \texttt{center-decimal-marker} places the decimal marker for the number at the centre of the column. This does not need any information in advance, and so is the standard setting. It works best for approximately symmetrical input (equal numbers of digits before and after the decimal). On the other hand, the \texttt{center}, \texttt{left} and \texttt{right} options require space to be reserved for the numbers, and then use this fixed space to align with the edges of the column. The different alignment choices are illustrated in Table 27, which uses somewhat exaggerated column headings to show the relative position of the cell contents.
Table 27: Aligning the \texttt{S} column.

\begin{table}[!h]
\centering
\begin{tabular}{cccc}
\textbf{Some Values} & \textbf{Some Values} & \textbf{Some Values} & \textbf{Some Values} \\
2.3456 & 2.3456 & 2.3456 & 2.3456 \\
34.2345 & 34.2345 & 34.2345 & 34.2345 \\
56.7835 & 56.7835 & 56.7835 & 56.7835 \\
90.473 & 90.473 & 90.473 & 90.473 \\
\end{tabular}
\end{table}

Many of the other table options do not apply when \texttt{table-number-alignment = center-decimal-marker} is set, as this mode always centres the marker at the expense of any other choices.

The space reserved by \texttt{siunitx} for a number is controlled by two families of options. The first family cover the number of digits allowed for in different parts of the number, for example \texttt{table-figures-integer} controls the space for integer digits in the mantissa. If the number of figures is set to 0, then no space is reserved and some output will either be out of position or not printed at all (although a warning will result). Reserving space for a given part of number will automatically include space for any associated items (for example the ‘\times’ symbol for exponents). The second family of options are switches which govern whether space is reserved for a sign: \texttt{table-sign-exponent} and \texttt{table-sign-mantissa}. The effect of altering some of these settings is shown in Table 28.
Table 28: Reserving space in S columns.

<table>
<thead>
<tr>
<th>Values</th>
<th>Values</th>
<th>Values</th>
<th>Values</th>
<th>Values</th>
<th>Values</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>2.3</td>
<td>2.3(5)</td>
<td>2.3 ± 0.5</td>
<td>2.3</td>
<td>2.3 × 10^8</td>
<td></td>
</tr>
<tr>
<td>34.23</td>
<td>34.23</td>
<td>34.23(4)</td>
<td>34.23 ± 0.04</td>
<td>34.23</td>
<td>34.23</td>
<td></td>
</tr>
<tr>
<td>56.78</td>
<td>56.78</td>
<td>56.78(3)</td>
<td>56.78 ± 0.03</td>
<td>−56.78</td>
<td>56.78 × 10^3</td>
<td></td>
</tr>
<tr>
<td>3.76</td>
<td>3.76</td>
<td>3.76(2)</td>
<td>3.76 ± 0.02</td>
<td>±3.76</td>
<td>10^6</td>
<td></td>
</tr>
</tbody>
</table>

Space can also be reserved in a table for a comparator (greater than, less than, and so forth). This is activated using the `table-comparator` switch (Table 29).

\begin{tabular}{S[table-comparator = true]}
\toprule
\midrule
2.3 & 2.3 & 2.3(5) & 2.3(5) & 2.3 & 2.3e8 \\
34.23 & 34.23 & 34.23(4) & 34.23(4) & 34.23 & 34.23 \\
56.78 & 56.78 & 56.78(3) & 56.78(3) & −56.78 & 56.78e3 \\
3.76 & 3.76 & 3.76(2) & 3.76(2) & +3.76 & e6 \\
\bottomrule
\end{tabular}
Table 29: Reserving space for comparators in S columns.

<table>
<thead>
<tr>
<th>Values</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>$< 2.3 \times 10^8$</td>
</tr>
<tr>
<td>34.23</td>
<td>$=34.23$</td>
</tr>
<tr>
<td>56.78</td>
<td>$\geq 56.78 \times 10^3$</td>
</tr>
<tr>
<td>3.76</td>
<td>$\gg 10^6$</td>
</tr>
</tbody>
</table>

The table-printing code will omit any part of a number which has no space reserved, placing a warning in the \LaTeX{} log. This means that uncertainties and exponents will not be printed if no space is reserved for them.

As a short cut for the preceding options, \texttt{siunitx} also provides the \texttt{table-format} option. This can be used to give the same information about the space to reserve for a number in a ‘compressed’ manner. The input to \texttt{table-format} should consist of a number showing how many figures to reserve in each part of the input. Thus

\begin{verbatim}
\sisetup{
 table-format = 3.2
}
\end{verbatim}

is equivalent to

\begin{verbatim}
\sisetup{
 table-figures-integer = 3,
 table-figures-decimal = 2
}
\end{verbatim}

The \texttt{table-format} option will also correctly interpret the presence of a sign, so that

\begin{verbatim}
\sisetup{
 table-format = +3.2e+4
}
\end{verbatim}

will have the same effect as

\begin{verbatim}
\sisetup{
 table-figures-integer = 3,
 table-figures-decimal = 2,
 table-figures-exponent = 4,
 table-sign-mantissa,
 table-sign-exponent
}
\end{verbatim}
Table 30: Using the \texttt{table-format} option.

\begin{table}
\centering
\begin{tabular}{S S[S[table-format = 2.2]] S[S[table-format = 2.2(1)]] S[S[table-format = +2.2]] S[S[table-format = 2.2e1]]}
\toprule
\textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} \\
\midrule
2.3 & 2.3 & 2.3(5) & 2.3 & 2.3 \times 10^8 \\
34.23 & 34.23 & 34.23(4) & 34.23 & 34.23 \\
56.78 & 56.78 & 56.78(3) & -56.78 & 56.78 \times 10^3 \\
3.76 & 3.76 & 3.76(2) & \pm 3.76 & 10^6 \\
\bottomrule
\end{tabular}
\end{table}

It is important to note that any parts of a number \textit{not} specified in the table format argument are set to be absent (the number of figures is set to zero). Setting the \texttt{table-format} option also resets \texttt{table-number-alignment} to \texttt{center} (Table 30).

\begin{table}
\centering
\begin{tabular}{S S[S[table-format = 2.2]] S[S[table-format = 2.2(1)]] S[S[table-format = +2.2]] S[S[table-format = 2.2e1]]}
\toprule
\textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} \\
\midrule
2.3 & 2.3 & 2.3(5) & 2.3 & 2.3e8 \\
34.23 & 34.23 & 34.23(4) & 34.23 & 34.23 \\
56.78 & 56.78 & 56.78(3) & -56.78 & 56.78e3 \\
3.76 & 3.76 & 3.76(2) & \pm 3.76 & e6 \\
\bottomrule
\end{tabular}
\end{table}

Space for material before and after the \texttt{S} column can be reserved by giving model text for the options \texttt{table-space-text-pre} and \texttt{...-post}. This is then used to provide the necessary gap while maintaining alignment (Table 31).

\begin{table}
\centering
\begin{tabular}{S S[S[table-format = 2.2]] S[S[table-format = 2.2(1)]] S[S[table-format = +2.2]] S[S[table-format = 2.2e1]]}
\toprule
\textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} & \textit{Values} \\
\midrule
2.3 & 2.3 & 2.3(5) & 2.3 & 2.3e8 \\
34.23 & 34.23 & 34.23(4) & 34.23 & 34.23 \\
56.78 & 56.78 & 56.78(3) & -56.78 & 56.78e3 \\
3.76 & 3.76 & 3.76(2) & \pm 3.76 & e6 \\
\bottomrule
\end{tabular}
\end{table}

54
Table 31: Text before and after numbers.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3456</td>
</tr>
<tr>
<td>34.2345a</td>
</tr>
<tr>
<td>56.7835</td>
</tr>
<tr>
<td>now 90.473</td>
</tr>
</tbody>
</table>

When printing exponents in tables, there is a choice of aligning the exponent parts or having these close up to the mantissa. This is controlled by the \texttt{table-align-exponent} option (Table 32). Similarly, uncertainty parts which are printed separately from the mantissa can be aligned or closed up. This is set by the \texttt{table-align-uncertainty} option (Table 33). Finally, the same approach is available for the comparator with the \texttt{table-align-comparator} option (Table 34).

\begin{table}
\centering
\caption{The \texttt{table-align-exponent} option}
\label{tab:align:exp}
\sisetup{table-format = 1.3e2, table-number-alignment = center}
\begin{tabular}{SS[\texttt{table-align-exponent = false}]}
\toprule
{Header} & {Header} \\
\midrule
2.3456 & \\
34.2345 \textsuperscript{\texttt{a}} & \\
56.7835 & \\
now & 90.473 \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{The \texttt{table-align-uncertainty} option}
\label{tab:align:unc}
\sisetup{table-format = 1.3e2, table-number-alignment = center}
\begin{tabular}{SS[\texttt{table-align-uncertainty = false}]}
\toprule
{Header} & {Header} \\
\midrule
1.2e3 & 1.2e3 \\
1.234e56 & 1.234e56 \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{The \texttt{table-align-comparator} option}
\label{tab:align:comp}
\sisetup{table-format = 1.3e2, table-number-alignment = center}
\begin{tabular}{SS[\texttt{table-align-comparator = false}]}
\toprule
{Header} & {Header} \\
\midrule
1.2e3 & 1.2e3 \\
1.234e56 & 1.234e56 \\
\bottomrule
\end{tabular}
\end{table}
Table 32: The `table-align-exponent` option

<table>
<thead>
<tr>
<th>Header</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2×10^3</td>
<td>1.2×10^3</td>
</tr>
<tr>
<td>1.234×10^{56}</td>
<td>1.234×10^{56}</td>
</tr>
</tbody>
</table>

Table 33: The `table-align-uncertainty` option

<table>
<thead>
<tr>
<th>Header</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>1.234 ± 0.005</td>
<td>1.234 ± 0.005</td>
</tr>
</tbody>
</table>

\begin{table}
\centering
\caption{The `table-align-uncertainty` option}
\label{tab:align:uncert}
\sisetup{separate-uncertainty, table-format = 1.3(1),}
\begin{tabular}{SS [table-align-uncertainty = false]}
\toprule
\{Header\} & \{Header\} \\
\midrule
1.2(1) & 1.2(3) \\
1.234(5) & 1.234(5) \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{The `table-align-comparator` option}
\label{tab:align:comp}
\sisetup{table-format = >2.2}
\begin{tabular}{SS [table-align-comparator = false]}
\toprule
\{Header\} & \{Header\} \\
\midrule
56 & 56 \\
\bottomrule
\end{tabular}
\end{table}
Table 34: The table-align-comparator option

<table>
<thead>
<tr>
<th>Header</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.2</td>
<td>> 1.2</td>
</tr>
<tr>
<td>< 12.34</td>
<td>< 12.34</td>
</tr>
</tbody>
</table>

In cases where data cover a range of values, printing using a fixed exponent in a table may make presentation clearer. In these cases, omitting the exponent value from the table is useful. The package offers the table-omit-exponent option to do this (Table 35); this automatically sets scientific-notation = fixed for the table column.

```latex
\begin{table}
\centering
\caption{The \opt{table-omit-exponent} option}
\label{tab:exp:omit}
\begin{tabular}{S[table-format = 1.1e1] S[{table-format = 2.1, table-omit-exponent}]}\toprule
{Header} & {Header / \num{e3}} \\
\midrule
1.2e3 & 1.2e3 \\
3e2 & 3e2 \\
1.0e4 & 1.0e4 \\
\bottomrule
\end{tabular}
\end{table}
```

table-omit-exponent

Note markers are often given in tables after the numerical content. It may be desirable for these to close up to the numbers. Whether this takes place is controlled by the table-align-text-pre and ...-post option (Table 36).

```latex
\begin{table}
\caption{Closing notes up to text.}
\end{table}
```
Table 35: The `table-omit-exponent` option

<table>
<thead>
<tr>
<th>Header</th>
<th>Header / 10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2×10^3</td>
<td>1.2</td>
</tr>
<tr>
<td>3×10^2</td>
<td>0.3</td>
</tr>
<tr>
<td>1.0×10^1</td>
<td>10</td>
</tr>
</tbody>
</table>

\label{tab:S:notes}
\newrobustcmd\NoteMark[1]{% \textsuperscript{\emph{#1}}}%
\centering
\sisetup{ table-number-alignment = center, table-figures-integer = 2, table-figures-decimal = 4, table-space-text-pre = \NoteMark{a} }
\begin{tabular}{SS}
\toprule
{Values} & {Values} \\
\midrule
2.3456 & 2.3456 \\
\NoteMark{a} 4.234 & \NoteMark{a} 4.234 \\
\NoteMark{b} .78 & \NoteMark{b} .78 \\
\NoteMark{d} 88 & \NoteMark{d} 88 \\
\bottomrule
\end{tabular}
\hspace{0pt}
\sisetup{table-space-text-post = \NoteMark{a}}
\begin{tabular}{SS}
\toprule
{Values} & {Values} \\
\midrule
2.3456 & 2.3456 \\
34.234 \ NoteMark{a} & 34.234 \ NoteMark{a} \\
56.78 \ NoteMark{b} & 56.78 \ NoteMark{b} \\
90.4 \ NoteMark{c} & 90.4 \ NoteMark{c} \\
88 \ NoteMark{d} & 88 \ NoteMark{d} \\
\bottomrule
\end{tabular}
Table 36: Closing notes up to text.

<table>
<thead>
<tr>
<th>Values</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3456</td>
<td>2.3456</td>
</tr>
<tr>
<td>4.234</td>
<td>4.234</td>
</tr>
<tr>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>88</td>
<td>88</td>
</tr>
</tbody>
</table>

\end{table}

table-auto-round The contents of table cells can automatically be rounded or zero-filled to the number of decimal digits given for the table-figures-decimal option. This mode is activated using the table-auto-round switch, as illustrated in Table 37.

\begin{table}
\centering
\caption{The \texttt{table-auto-round} option.}
\label{tab:S:auto}
\sisetup{
 table-number-alignment = center,
 table-figures-integer = 1,
 table-figures-decimal = 3
}
\begin{tabular}{SS[table-auto-round]}
\toprule
{Header} & {Header} \\
\midrule
1.2 & 1.2 \\
1.234 & 1.234 \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}[ht]
\centering
\caption{The \texttt{parse-numbers} option.}
\label{tab:S:parse}
\begin{tabular}{SS[parse-numbers]}
\toprule
{Header} & {Header} \\
\midrule
1.2 & 1.2 \\
1.234 & 1.234 \\
\bottomrule
\end{tabular}
\end{table}

parse-numbers When the parse-numbers option is set to \texttt{false}, then the alignment code for tables takes a different approach. The output is always set in math mode, and alignment takes place at the first decimal marker. This is achieved by making it active in math mode. When reserving space for content only the integer and decimal values for the mantissa are considered (Table 38).
Table 37: The table-auto-round option.

<table>
<thead>
<tr>
<th>Header</th>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.200</td>
</tr>
<tr>
<td>1.2345</td>
<td>1.235</td>
</tr>
</tbody>
</table>

Table 38: Aligning without parsing.

\begin{table}
\caption{Aligning without parsing.}
\label{tab:S:nonparsed}
\sisetup{
 parse-numbers = false,
 table-figures-integer = 2,
 table-figures-decimal = 3
}
\centering
\begin{tabular}{S S S S}
\toprule
\multicolumn{1}{c}{Some values} & \multicolumn{1}{c}{Some values} & \multicolumn{1}{c}{Some values} & \multicolumn{1}{c}{Some values} \\
\midrule
2.35 & 2.35 & 2.35 & 2.35 \\
34.234 & 34.234 & 34.234 & 34.234 \\
56.783 & 56.783 & 56.783 & 56.783 \\
3.762 & 3.762 & 3.762 & 3.762 \\
\sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
\bottomrule
\end{tabular}
\end{table}
Cell contents which are not part of a number can be protected using braces, as illustrated. Cells which contain no numerical data at all are aligned using the setting specified by the \texttt{table-text-alignment} option, which recognises the values center, left and right (Table 39).

\begin{table}
\caption{Aligning text in S columns.}
\label{tab:S:text}
\sisetup{
 table-number-alignment = center,
 table-figures-integer = 4,
 table-figures-decimal = 4
}
\centering
\begin{tabular}{SSS[table-text-alignment = left]
 S[table-text-alignment = right]}
\toprule
\{Values\} & \{Values\} & \{Values\} \\
\midrule
992.435 & 992.435 & 992.435 \\
7734.2344 & 7734.2344 & 7734.2344 \\
56.7834 & 56.7834 & 56.7834 \\
3.7462 & 3.7462 & 3.7462 \\
\bottomrule
\end{tabular}
\end{table}

The contents of \texttt{s} columns can be centred or aligned to the left or right using the \texttt{table-unit-alignment} option. As for the other alignment options, this recognises the choices center, left and right.

\begin{table}
\centering
\begin{tabular}{SSS}
\toprule
\{Values\} & \{Values\} & \{Values\} \\
\midrule
992.435 & 992.435 & 992.435 \\
7734.2344 & 7734.2344 & 7734.2344 \\
56.7834 & 56.7834 & 56.7834 \\
3.7462 & 3.7462 & 3.7462 \\
\bottomrule
\end{tabular}
\end{table}
Table 40: Alignment options in s columns.

<table>
<thead>
<tr>
<th>Left-aligned</th>
<th>Centred text</th>
<th>Right-aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>m s$^{-1}$</td>
<td>m s$^{-1}$</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>kg</td>
<td>kg</td>
<td>kg</td>
</tr>
</tbody>
</table>

The three table alignment options (table-number-alignment, table-text-alignment and table-unit-alignment) can be set to the same value using the table-alignment option. This will set all three alignment options to the same value (one of center, right or left).

Usually, the width of the S and s columns is allowed to vary depending on the content. However, there are cases where a strictly fixed width is desirable. For these cases, the table-column-width option is available. The standard setting, 0 pt, indicates that no fixing takes place. If a value is set for this option then the tabular material is typeset to the specified width (Table 41).

```
\begin{table}
  \centering
  \caption{Fixed-width columns.}
  \label{tab:width:fixed}
  \begin{tabular}
    \{ 
    s[table-column-width = 2 cm] 
    s
    s[table-column-width = 2 cm] 
    \}
  \toprule
  \{Left-aligned\} & \{Centred text\} & \{Right-aligned\} \\
  \midrule
  \metre\per\second & \metre\per\second & \metre\per\second \\
  \kilogram & \kilogram & \kilogram \\
  \bottomrule
  \end{tabular}
  \end{table}
```
Table 41: Fixed-width columns.

<table>
<thead>
<tr>
<th>Flexible</th>
<th>Fixed</th>
<th>Flexible</th>
<th>Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>m s$^{-1}$</td>
<td>m s$^{-1}$</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>kg cd</td>
<td>kg cd</td>
<td>45.6</td>
<td>45.6</td>
</tr>
</tbody>
</table>

The `table-column-width` option can also be used to achieve special effects. One example is centring a column of numbers under a wide heading, with the numbers themselves right-aligned (Table 42).

\begin{table}
\centering
\caption{Right-aligning under a heading.}
\label{tab:width:special}
\settowidth{\mylength}{Long header}
\sisetup{
 table-format = 4 ,
 table-number-alignment = center ,
 table-column-width = \mylength ,
 input-decimal-markers = ,
 input-symbols = . ,
}
\begin{tabular}{S}
\toprule
{Long header} \\
\midrule
12.33 \\
2 \\
1234 \\
\bottomrule
\end{tabular}
\end{table}
Table 42: Right-aligning under a heading.

<table>
<thead>
<tr>
<th>Long header</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.33</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1234</td>
</tr>
</tbody>
</table>

5.15 Symbols

Most units use letters as the symbol for the unit, and these are all very easy to control. However, a small number of units use other symbols, and matching these to the body text requires more work. \texttt{siunitx} provides appropriate symbols for commonly-used units, but the definitions may need adjustment depending on the body font used in a document.

The package provides one general option for the handling of symbols. If the packages \texttt{textcomp} or \texttt{upgreek} are loaded, symbols can be taken from these for units, rather than using the \texttt{siunitx} default values. The switch \texttt{redefine-symbols} can be used to turn this behaviour on or off: the standard setting is \texttt{true}.

The individual symbols are set up independently for math and text output, and are summarised in Table 43. Many of the definitions are variations using \texttt{\text} or \texttt{\ensuremath} to produce the correct output, as the symbols available in the document may vary considerably. In the case of the micro symbol (\textmu{}), \texttt{siunitx} provides a suitable low-level definition for the symbol. Depending on the fonts available, this may need to be replaced by an alternative by the user. The ohm symbol (\Omega{}) is usually set to \texttt{\Omega}, but will check that this has not been redefined as a slanted letter. If \texttt{\Omega} has been redefined, an alternative definition is used.

The math and text symbols defined above are wrapped up into mode independent functions with user names. These are then used in the definitions of the appropriate units. For example, the micro symbol can be accessed using the macro \texttt{\SIUnitSymbolMicro}. Notice that these names capitalise the unit name (to make reading the macro name easier).7

5.16 Other options

\texttt{locale} \texttt{siunitx} allows the user to switch between the typographic conventions of different (geographical) areas by using locales. Currently, the package is supplied with configurations for locales \texttt{UK}, \texttt{US}, \texttt{DE} (Germany), \texttt{FR} (French) and \texttt{ZA} (South Africa). The \texttt{locale} option is used to switch to a particular locale.

| 1.234 m | \SI{1.234}{\metre} | \SI{6.789}{\metre} |

7The function \texttt{\SIUnitSymbolAngstrom} uses the name without accents.
Table 43: Symbol options.

<table>
<thead>
<tr>
<th>Option name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>math-angstrom</td>
<td>Literal</td>
<td>\text{\AA}</td>
</tr>
<tr>
<td>math-arcminute</td>
<td>Literal</td>
<td>{}^\prime</td>
</tr>
<tr>
<td>math-arcsecond</td>
<td>Literal</td>
<td>{}^\prime\prime</td>
</tr>
<tr>
<td>math-celsius</td>
<td>Literal</td>
<td>\kern -\scriptspace \text{C}</td>
</tr>
<tr>
<td>math-degree</td>
<td>Literal</td>
<td>{}^\circ</td>
</tr>
<tr>
<td>math-micro</td>
<td>Literal</td>
<td>\Omega</td>
</tr>
<tr>
<td>redefine-symbols</td>
<td>Switch</td>
<td>true</td>
</tr>
<tr>
<td>text-angstrom</td>
<td>Literal</td>
<td>\AA</td>
</tr>
<tr>
<td>text-arcminute</td>
<td>Literal</td>
<td>\ensuremath{{}^\prime}</td>
</tr>
<tr>
<td>text-arcsecond</td>
<td>Literal</td>
<td>\ensuremath{{}^\prime\prime}</td>
</tr>
<tr>
<td>text-celsius</td>
<td>Literal</td>
<td>\ensuremath{{}^\circ} \kern -\scriptspace \text{C}</td>
</tr>
<tr>
<td>text-degree</td>
<td>Literal</td>
<td>\ensuremath{{}^\circ}</td>
</tr>
<tr>
<td>text-micro</td>
<td>Literal</td>
<td>\ensuremath{{}^\circ} \kern -\scriptspace \text{C}</td>
</tr>
<tr>
<td>text-ohm</td>
<td>Literal</td>
<td>\ensuremath{{}\Omega}</td>
</tr>
</tbody>
</table>

Some users will want to stick closely to the official rules for typesetting units. This could be made complicated if the options for non-standards behaviour could not be turned off. The preamble-only option `strict` resets package behaviour to follow the rules closely, and disables options which deviate from this. If the package is loaded with the `strict` option, all output is made using the upright serif font.

5.17 Local configurations

The `siunitx` package will check for a local configuration file `siunitx.cfg` during package loading. This occurs before applying any setting given in the optional argument to `\usepackage`. A typical configuration file may include settings (using `\sisetup`) and locally-defined units, for example

\ProvidesFile{siunitx.cfg}
\sisetup{
 output-decimal-marker = {,},
 per-mode = symbol,
}
\DeclareSIUnit{torr}{torr}

As units are always declared, overwriting any existing definition, units may safely be created in the configuration file even when also included in individual LaTeX document headers.
Installing a local configuration file on your system is very much like doing a local installation of a package. The exact method depends on the TeX system in use. For advice on this, a good start is the TeX.SX question on local installation.

6 Localisation

The translator package provides a structured framework for localisation of words and phrases, and is part of the larger beamer bundle. The translator package provides the \translate macro, which will provide appropriate translations based on the current babel or polyglossia language setting.

If translator is available, siunitx will load it and alter the standard settings for the list-final-separator and range-phrase options to read:

\sisetup{
 list-final-separator = { \translate{and} },
 range-phrase = { \translate{to (numerical range)} },
}

If the current language is known to the translator package then the result will be localised text. The preamble for this manual loads English, French and German as options, and also loads the babel package:

\selectlanguage{english}
\SIlist{1;2;3}{\metre} \\
\SIrange{1}{10}{\degreeCelsius} \\
\selectlanguage{french}
\SIlist{1;2;3}{\metre} \\
\SIrange{1}{10}{\degreeCelsius} \\
\selectlanguage{german}
\SIlist{1;2;3}{\metre} \\
\SIrange{1}{10}{\degreeCelsius}

Note that the in order for this to work correctly, languages should be given as global (class) options rather than as package options for babel.

7 Hints for using siunitx

7.1 Ensuring text or math output

The macros $\text{\textbackslash ensuremath}$ and $\text{\textbackslash text}$ should be used to ensure that a particular item is always printed in the desired mode. Some mathematical output does not work well in $\text{\textbackslash math}$ (the standard font used by siunitx for printing). The easiest way to solve this is to use the construction $\text{\textbackslash text{\textbackslash ensuremath{\ldots}}}$, which will print the material
in the standard mathematics font without affecting the rest of the output. In some cases, simply forcing \textnormal will suffice, but this is less reliable with non-Latin characters.

7.2 Expanding content in tables

When processing tables, \texttt{siunitx} will expand anything stored inside a macro, unless it is long or protected. \LaTeX\robust commands are also detected and are not expanded (Table 44). Values which would otherwise be expanded can be protected by wrapping them in a set of braces. As \TeX\ itself will expand the first token in a table cell before \texttt{siunitx} can act on it, using the \texttt{\LaTeX\ robust} mechanism is the recommended course of action to prevent expansion of macros in table cells. (As is shown in the table, \LaTeX\'s expansion of \LaTeX\robust commands can lead to unexpected results.)

\begin{table}
\centering
\caption{Values as macros in \texttt{S} columns.}
\label{tab:xmpl:macro}
\newcommand\myvaluea{1234}
\newcommand\myvalueb{1234}
\DeclareRobustCommand\myvaluec{1234}
\protected\def\myvalued{1234}
\begin{tabular}{S}
\toprule
\{Some Values} \\
\midrule
\myvaluea 8.8 \myvaluea \ % Both expanded
\myvalueb 8.8 \myvalueb \ % First expanded by \TeX\ \% to numbers
\myvaluec 8.8 \myvaluec \ % First expanded by \TeX\ \% but not to numbers!
\myvalued 8.8 \myvalued \ % Neither expanded
{\myvaluea\ myvaluea} \ % Neither expanded
\bottomrule
\end{tabular}
\end{table}

It is possible to use calculated values in tables. For this to work, the calculation must take place before attempting to parse the number. An added complication is that \TeX\ itself will expand the first macro in a table cell until it finds something unexpandable. The \texttt{\LaTeX\ protected} mechanism can be used to prevent this; using the \texttt{etoolbox} package provides a convenient way to apply this protection to existing functions. The general approach is illustrated in Table 45. The macro \texttt{\DTLmul} is made robust inside the table using the \texttt{\robustify} command from \texttt{etoolbox}, before constructing the table using an extra column to contain the calculation.
Table 44: Values as macros in S columns.

<table>
<thead>
<tr>
<th>Some Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 348.81234</td>
</tr>
<tr>
<td>12 348.8 1234</td>
</tr>
<tr>
<td>12348.8 1234</td>
</tr>
<tr>
<td>12348.81234</td>
</tr>
<tr>
<td>1234 8.8 1234</td>
</tr>
</tbody>
</table>

\DTLnewdb{data}
\DTLnewrow{data}\DTLnewbentry{data}{value}{66.7012}
\DTLnewrow{data}\DTLnewbentry{data}{value}{66.0212}
\DTLnewrow{data}\DTLnewbentry{data}{value}{64.9026}
\begin{table}
\caption{Calculated values.}
\label{tab:xmpl:calc}
\centering
\robustify\DTLmul
\sisetup{
table-number-alignment = center,
table-figures-integer = 2,
table-figures-decimal = 4
}
\begin{tabular}{S S[table-figures-integer = 3]@{}}
\toprule
{Value} & {Doubled} & \DTLforeach{data}{\myvalue=value}{{\% \DTLiffirstrow {\midrule}{\}}}{myvalue}{2} {myvalue \% second column} & \\
\bottomrule
\end{tabular}
\end{table}

7.3 Using siunitx with datatool

As illustrated in Table 45, siunitx can be used to typeset data stored using datatool. For quickly displaying the contents of tables, datatool offers the \DTLshowtable macro. This will only work with S columns if number parsing is turned off (Table 46).
Table 45: Calculated values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Doubled</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.7012</td>
<td>133.4024</td>
</tr>
<tr>
<td>66.0212</td>
<td>132.0424</td>
</tr>
<tr>
<td>64.9026</td>
<td>129.8052</td>
</tr>
</tbody>
</table>

Table 46: Displaying a datatool table.

\begin{table}
\caption{Displaying a \textsf{datatool} table.}
\label{tab:xmpl:datatool}
\centering
\sisetup{
parse-numbers = false,
table-number-alignment = center,
table-figures-integer = 2,
table-figures-decimal = 4
}
\renewcommand*{\dtrrealalign}{S}
\DTLdisplaydb{moredata}
\end{table}

7.4 Using units such as μm s$^{-1}$ in headings

The \texttt{siunitx} code is designed to work correctly with functions in headings. They will print correctly in headings and in the table of contents. As illustrated here, the standard behaviour is to ignore font changes. When the \texttt{hyperref} package is loaded, the functions automatically ‘degrade gracefully’ to produce useful information in PDF bookmarks. If you want more control over the bookmark text, use the \texttt{\textorpdfstring} function from \texttt{hyperref}, for example:

\section{Some text}
\textorpdfstring
{\si{\joule\per\mole\per\kelvin}}
7.5 Symbols and \LaTeX

A small number of non-Latin symbols are needed by \texttt{siunitx}, notably Ω and µ. The package picks glyphs for these which are correct in the sense that they are upright (not italic) symbols, and match the \LaTeX standard Computer Modern font. However, this does not make them the best choice if other fonts are in use, which is particularly common when \LaTeX is being used.

\LaTeX users will probably need to choose appropriate symbols themselves. The correct choice depends on the fonts in use, but many system fonts include Greek letters and other symbols (which is not the case with most \TeX-specific fonts). An appropriate setting could then be to use the text µ symbol in all cases:

\begin{verbatim}
\sisetup{
 math-micro = \text{µ},
 text-micro = µ
}
\end{verbatim}

It may also be desirable in these cases to select a fixed font using the \texttt{fontspec} package, for example

\begin{verbatim}
\sisetup{
 math-micro = \fontspec{Minion Pro} \textmu,
 text-micro = \fontspec{Minion Pro} \textmu
}
\end{verbatim}

7.6 Scaled document fonts with \LaTeX

The \texttt{fontspec} package makes it possible to scale the document body font. This can lead to unexpected problems with printing for \texttt{siunitx}, as some symbols will not scale while numbers and text will. The problem is best avoided by forcing \texttt{siunitx} to use the default math font for all output:

\begin{verbatim}
\sisetup{
 mode = math,
 math-rm = \ensuremath
}
\end{verbatim}

This will cause all \texttt{siunitx} output \textit{not} to scale at all, consistent with other mathematical content.
7.7 Interaction with \texttt{tex4ht}

\texttt{siunitx} will detect when \texttt{tex4ht} is in use, and makes some changes to the way output is printed. Text mode printing is automatically selected, and certain items (such as spaces) are printed in text mode rather than as math. This is designed to reduce the likelihood of spurious formulae appearing in, for example, output converted to OpenOffice format.

7.8 Maximising performance

Both the number and unit parsers require significant effort in terms of \TeX\ programming. For input that does not require such processing, the maximum performance for \texttt{siunitx} can therefore be obtained by turning off both systems:

\begin{verbatim}
\SI{7.3}{\Hz} \\
\SI[parse-units = false]{7.3}{\Hz} \\
\SI[parse-numbers = false, parse-units = false](){7.3}{\Hz}
\end{verbatim}

7.9 Transferring settings to \texttt{pgf}

The numerical engine in the \texttt{pgf} package has settings similar to those in \texttt{siunitx}. To enable working with both packages easily, the macro \texttt{SendSettingsToPgf} is available. It will set some commonly-used numerical formatting options in \texttt{pgf} to the current values used by \texttt{siunitx} to make using the two packages together more convenient for end users. This function can be used at any point after loading both the \texttt{pgf}\ and \texttt{siunitx}\ packages.

\begin{verbatim}
\documentclass{article} \\
\usepackage{pgf,siunitx} \\
\sisetup{...} \\
\SendSettingsToPgf \\
\end{verbatim}

7.10 Using \texttt{siunitx} with the \texttt{cellspace} package

Both \texttt{siunitx} and \texttt{cellspace} use the letter \texttt{S} for a new column type. This obviously leads to a problem. If both are loaded, \texttt{siunitx} will retain the \texttt{S} column, and moves the functionality of \texttt{cellspace} to the letter \texttt{C}. This allows the normal use of \texttt{cellspace} with standard column types: it does not work with the \texttt{siunitx} \texttt{S} or \texttt{s} columns.
7.11 Special considerations for the kWh unit

The abbreviations configuration file provides the unit kWh, which is set up with no spacing between the ‘kW’ and the ‘h’ unit to give ‘kWh’. However, this only applies when the unit is given on its own: combinations will follow the normal rules:

\(\text{kWh} \quad \text{\textbackslash si\{kWh\}} \)
\(\text{kWh m}^{-1} \quad \text{\textbackslash si\{kWh per\ metre\}} \)

This is because the unit kWh is defined so that it can still be varied by altering kilo, watt and hour, and so that the prefix can still be turned into a number. However, some users may prefer to have a non-flexible macro which never adds a space. This can be achieved by redefining kWh with \DeclareSIUnit, by added an alternative definition:

\(\text{\textbackslash DeclareSIUnit\ kWh\{kWh\}} \)
\(\text{\textbackslash DeclareSIUnit\ kWh\{KWH\}} \)

or of course by using literal unit input:

\(\text{kWh m}^{-1} \quad \text{\textbackslash si\{KWH per\ metre\}} \)
\(\text{kWh m}^{-1} \quad \text{\textbackslash si\{kWh\ m\^{-1}\}} \)

Another point to notice is that the per macro applies to the next unit, and not an entire unit combination. Thus in

\(\text{cd kW}^{-1} \text{h} \quad \text{\textbackslash si\{candela per\ kWh\}} \)

\textbackslash per applies to the watts but not to the hours. In this case, the units need to be written out in full or the sticky-per option should be used.

\(\text{\textbackslash si\{candela per\ kilo\ watt\ per\ hour\}} \)
\(\text{\textbackslash si\{sticky-per\}\{candela per\ kWh\}} \)
\(\text{cd kW}^{-1} \text{h}^{-1} \)
\(\text{cd kW}^{-1} \text{h}^{-1} \)

7.12 Adding items after the last column of a tabular

When using the array package ‘<’ construct to insert material after an S or s column, the alignment of the final column may be wrong if the standard tabular row terminator \ is used. This is due to the way that \LaTeX constructs tables at a low level. The incorrect spacing can be avoided by using the TeX \cr primitive to end the table rows (Table 47).
Table 47: Correcting spacing in last S column

<table>
<thead>
<tr>
<th>Long header</th>
<th>Long header</th>
<th>Long header</th>
<th>Long header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23 kg</td>
<td>1.23 kg</td>
<td>1.23 kg</td>
<td>1.23 kg</td>
</tr>
<tr>
<td>4.56 kg</td>
<td>4.56 kg</td>
<td>4.56 kg</td>
<td>4.56 kg</td>
</tr>
<tr>
<td>7.8 kg</td>
<td>7.8 kg</td>
<td>7.8 kg</td>
<td>7.8 kg</td>
</tr>
</tbody>
</table>

\begin{table}
\caption{Correcting spacing in last S column}
\label{tab:cr}
\hfil
\begin{tabular}{S<\si{\kg}S<\si{\kg}}
\toprule
\multicolumn{1}{c}{Long header} & \multicolumn{1}{c}{Long header} \\
\midrule
1.23 & 1.23 \\
4.56 & 4.56 \\
7.8 & 7.8 \\
\bottomrule
\end{tabular}
\hfil
\begin{tabular}{S<\si{\kg}S<\si{\kg}}
\toprule
\multicolumn{1}{c}{Long header} & \multicolumn{1}{c}{Long header} \\
\midrule
1.23 & 1.23 \\
4.56 & 4.56 \\
7.8 & 7.8 \\
\bottomrule
\end{tabular}
\hfil
\end{table}

7.13 Creating a column with numbers and units

Usually, numbers in a table should be given with the units in the column heading. However, there are cases where a series of data are best presented in a table but have different units. There are two ways to do this (Table 48). The first is to place the units in the first column of the table, which makes sense if there are several related items in the table. The second method is to generate two columns, one for numbers and a second for units, and then to format these to give the visual effect of a single column.
Table 48: Tables where numbers have different units

<table>
<thead>
<tr>
<th></th>
<th>One</th>
<th>Two</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a/\AA</td>
<td>1.234(2)</td>
<td>5.678(4)</td>
<td>1.234 m</td>
<td></td>
</tr>
<tr>
<td>β/\degree</td>
<td>90.34(4)</td>
<td>104.45(5)</td>
<td>0.835 cd</td>
<td></td>
</tr>
<tr>
<td>μ/mm^{-1}</td>
<td>0.532</td>
<td>0.894</td>
<td>4.23 J mol$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

The later effect is most appropriate when only one set of numbers are presented in a table.
7.14 Tables with heading rows

A common format for tables is to make the heading row visually distinct using a background colour and bold text. If numbers appear in such a heading row within an S column then getting the appearance right can be challenging. The best approach is to make the `bfseries` macro ‘robust’ (as demonstrated in Section 7.2), then to use this macro to make the heading cells bold. This approach is illustrated in Table 49, along with the use of `rowcolor` to provide a background colour.

\begin{table}
\centering
\begin{tabular}{S*[detect-weight,table-format = 3.3]}
\rowcolor[gray]{0.9}
\bfseries 123.456 \\
23.45 \\
123.4 \\
3.456 \\
\end{tabular}
\caption{Header row in a table}
\label{tab:xmpl:headers}
\end{table}

7.15 Associating a locale with a `babel` language

It is possible to instruct the `babel` package to switch to a particular `siunitx` locale when changing language. This can be done using the `babel \extras<language>` system. For example, to associate the DE locale with the `german` `babel` language, the appropriate code would be

```latex
\addto\extrasgerman{\sisetup{locale = DE}}
```
8 Information for those upgrading

8.1 Upgrading from version 1

The key–value control system of \texttt{siunitx} has been completely rewritten for version 2, and at the same time some of the macros provided by the package have been renamed and reworked. The package can be loaded with a configuration file to provide most of the same options and defaults as in version 1:

\usepackage[version-1-compatibility]{siunitx}

Many of the options from version 1 map to similar ones in version 2 (Table 50). The correspondence often includes a syntax change: consult details of the new options for the correct syntax for the new options. In some cases, the new approach is different to the older one, and in these cases the most appropriate option new has been listed in the table.

Table 50: Mapping of version 1 options to version 2.

<table>
<thead>
<tr>
<th>Version 1</th>
<th>See in version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>addsign</td>
<td>explicit-sign</td>
</tr>
<tr>
<td>allowlitunits</td>
<td>free-standing-units</td>
</tr>
<tr>
<td>allowoptarg</td>
<td>unit-optional-argument</td>
</tr>
<tr>
<td>allowzeroexp</td>
<td>retain-zero-exponent</td>
</tr>
<tr>
<td>anglesep</td>
<td>arc-separator</td>
</tr>
<tr>
<td>astroang</td>
<td>angle-symbol-over-decimal</td>
</tr>
<tr>
<td>closeerr</td>
<td>close-bracket</td>
</tr>
<tr>
<td>closefrac</td>
<td>close-bracket</td>
</tr>
<tr>
<td>closerange</td>
<td>close-bracket</td>
</tr>
<tr>
<td>colour</td>
<td>color</td>
</tr>
<tr>
<td>colourall</td>
<td>color</td>
</tr>
<tr>
<td>colourall</td>
<td>color</td>
</tr>
<tr>
<td>colorunits</td>
<td>unit-color</td>
</tr>
<tr>
<td>colorneg</td>
<td>negative-color</td>
</tr>
<tr>
<td>colourneg</td>
<td>negative-color</td>
</tr>
</tbody>
</table>

\textit{Continued on next page}
<table>
<thead>
<tr>
<th>Version 1</th>
<th>See in version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>colourunits</td>
<td>unit-color</td>
</tr>
<tr>
<td>colorvalues</td>
<td>value-color</td>
</tr>
<tr>
<td>colourvalues</td>
<td>value-color</td>
</tr>
<tr>
<td>decimalsymbol</td>
<td>output-decimal-marker</td>
</tr>
<tr>
<td>detectdisplay</td>
<td>detect-display-math</td>
</tr>
<tr>
<td>digitsep</td>
<td>group-separator</td>
</tr>
<tr>
<td>dp</td>
<td>round-mode</td>
</tr>
<tr>
<td></td>
<td>round-precision</td>
</tr>
<tr>
<td>errspace</td>
<td>uncertainty-separator</td>
</tr>
<tr>
<td>expbase</td>
<td>exponent-base</td>
</tr>
<tr>
<td>expproduct</td>
<td>exponent-product</td>
</tr>
<tr>
<td>fixdp</td>
<td>round-mode</td>
</tr>
<tr>
<td>fixsf</td>
<td>round-mode</td>
</tr>
<tr>
<td>fraction</td>
<td>fraction-function</td>
</tr>
<tr>
<td>inlinebold</td>
<td>detect-inline-weight</td>
</tr>
<tr>
<td>locale</td>
<td>locale</td>
</tr>
<tr>
<td>mathOmega</td>
<td>math-ohm</td>
</tr>
<tr>
<td>mathcelsius</td>
<td>math-celsius</td>
</tr>
<tr>
<td>mathdegree</td>
<td>math-degree</td>
</tr>
<tr>
<td>mathminute</td>
<td>math-arcminute</td>
</tr>
<tr>
<td>mathmu</td>
<td>math-micro</td>
</tr>
<tr>
<td>mathringA</td>
<td>math-angstrom</td>
</tr>
<tr>
<td>mathrm</td>
<td>math-rm</td>
</tr>
<tr>
<td>mathOmega</td>
<td>math-ohm</td>
</tr>
<tr>
<td>mathcelsius</td>
<td>math-celsius</td>
</tr>
<tr>
<td>mathdegree</td>
<td>math-degree</td>
</tr>
<tr>
<td>mathsecond</td>
<td>math-arcsecond</td>
</tr>
<tr>
<td>mathsf</td>
<td>math-sf</td>
</tr>
<tr>
<td>mathminute</td>
<td>math-arcminute</td>
</tr>
<tr>
<td>mathsmu</td>
<td>math-micro</td>
</tr>
<tr>
<td>mathsringA</td>
<td>math-angstrom</td>
</tr>
<tr>
<td>mathrm</td>
<td>math-rm</td>
</tr>
<tr>
<td>mathssecond</td>
<td>math-arcsecond</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Version 1</th>
<th>See in version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mathssf</td>
<td>math-sf</td>
</tr>
<tr>
<td>mathstt</td>
<td>math-tt</td>
</tr>
<tr>
<td>mathtt</td>
<td>math-tt</td>
</tr>
<tr>
<td>mode</td>
<td>mode</td>
</tr>
<tr>
<td>negcolor</td>
<td>negative-color</td>
</tr>
<tr>
<td>negcolour</td>
<td>negative-color</td>
</tr>
<tr>
<td>numaddn</td>
<td>input-symbols</td>
</tr>
<tr>
<td>numcloseerr</td>
<td>input-close-uncertainty</td>
</tr>
<tr>
<td>numdecimal</td>
<td>input-decimal-markers</td>
</tr>
<tr>
<td>numdigits</td>
<td>input-digits</td>
</tr>
<tr>
<td>numdiv</td>
<td>input-quotient</td>
</tr>
<tr>
<td>numexp</td>
<td>input-exponent-markers</td>
</tr>
<tr>
<td>numgobble</td>
<td>input-ignore</td>
</tr>
<tr>
<td>numopenerr</td>
<td>input-open-uncertainty</td>
</tr>
<tr>
<td>numprod</td>
<td>input-product</td>
</tr>
<tr>
<td>numsign</td>
<td>input-signs</td>
</tr>
<tr>
<td>obeyall</td>
<td>detect-all</td>
</tr>
<tr>
<td>obeybold</td>
<td>detect-weight</td>
</tr>
<tr>
<td>obeyfamily</td>
<td>detect-family</td>
</tr>
<tr>
<td>obeyitalic</td>
<td>detect-shape</td>
</tr>
<tr>
<td>obeymode</td>
<td>detect-mode</td>
</tr>
<tr>
<td>openerr</td>
<td>open-bracket</td>
</tr>
<tr>
<td>openfrac</td>
<td>open-bracket</td>
</tr>
<tr>
<td>openrange</td>
<td>open-bracket</td>
</tr>
<tr>
<td>padangle</td>
<td>add-arc-degree-zero</td>
</tr>
<tr>
<td></td>
<td>add-arc-minute-zero</td>
</tr>
<tr>
<td></td>
<td>add-arc-second-zero</td>
</tr>
<tr>
<td>padnumber</td>
<td>add-decimal-zero</td>
</tr>
<tr>
<td></td>
<td>add-integer-zero</td>
</tr>
<tr>
<td>per</td>
<td>per-mode</td>
</tr>
<tr>
<td>prefixesymbolic</td>
<td>prefixes-as-symbols</td>
</tr>
<tr>
<td>prespace</td>
<td>space-before-unit</td>
</tr>
<tr>
<td>redefsymbols</td>
<td>redefine-symbols</td>
</tr>
</tbody>
</table>

Continued on next page
Continued from previous page

<table>
<thead>
<tr>
<th>Version 1</th>
<th>See in version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeatunits</td>
<td>multi-part-units</td>
</tr>
<tr>
<td></td>
<td>product-units</td>
</tr>
<tr>
<td>retainplus</td>
<td>retain-explicit-plus</td>
</tr>
<tr>
<td>separate-uncertainty</td>
<td>8</td>
</tr>
<tr>
<td>sepfour</td>
<td>group-four-digits</td>
</tr>
<tr>
<td>sf</td>
<td>round-mode</td>
</tr>
<tr>
<td></td>
<td>round-precision</td>
</tr>
<tr>
<td>sign</td>
<td>explicit-sign</td>
</tr>
<tr>
<td>slash</td>
<td>per-symbol</td>
</tr>
<tr>
<td>stickyper</td>
<td>sticky-per</td>
</tr>
<tr>
<td>strict</td>
<td>strict</td>
</tr>
<tr>
<td>tabalign</td>
<td>table-alignment</td>
</tr>
<tr>
<td>tabalignexp</td>
<td>table-align-exponent</td>
</tr>
<tr>
<td>tabautofit</td>
<td>table-auto-round</td>
</tr>
<tr>
<td>tabformat</td>
<td>table-format</td>
</tr>
<tr>
<td>tabnumalign</td>
<td>table-number-alignment</td>
</tr>
<tr>
<td>tabparseonly</td>
<td>table-parse-only</td>
</tr>
<tr>
<td>tabexpalign</td>
<td>table-align-exponent</td>
</tr>
<tr>
<td>tabtextalign</td>
<td>table-text-alignment</td>
</tr>
<tr>
<td>tabunitalign</td>
<td>table-unit-alignment</td>
</tr>
<tr>
<td>textcelsius</td>
<td>text-celsius</td>
</tr>
<tr>
<td>textdegree</td>
<td>text-degree</td>
</tr>
<tr>
<td>textminute</td>
<td>text-arcminute</td>
</tr>
<tr>
<td>textmode</td>
<td>mode</td>
</tr>
<tr>
<td>textmu</td>
<td>text-micro</td>
</tr>
<tr>
<td>textOmega</td>
<td>text-ohm</td>
</tr>
<tr>
<td>textstringA</td>
<td>text-angstrom</td>
</tr>
<tr>
<td>textrm</td>
<td>text-rm</td>
</tr>
<tr>
<td>textsecond</td>
<td>text-arcsecond</td>
</tr>
<tr>
<td>textsf</td>
<td>text-sf</td>
</tr>
<tr>
<td>texttt</td>
<td>text-tt</td>
</tr>
<tr>
<td>tightpm</td>
<td>tight-spacing</td>
</tr>
<tr>
<td>tophrase</td>
<td>range-phrase</td>
</tr>
</tbody>
</table>

Continued on next page
A small number of the options from version 1 are used unchanged in version 2, for example the \texttt{mode} setting. These are listed above but require no action on the part of the user. There are also a few options which are no longer used at all, and are therefore ignored by the current code.

Loading configuration files has been completely changed, and this means that the options \texttt{alsoload}, \texttt{load} and \texttt{noload} are ignored by version 2. In the same way the options \texttt{debug} and \texttt{log} are not used by the current release of \texttt{siunitx}, as this information is usually only needed by the package author. Emulation of older packages is no longer offered (it was intended to help with the transition form earlier packages), and so the \texttt{emulate} option no longer applies.

8.2 Upgrading from version 2.0 or 2.1

User feedback on \texttt{siunitx} means that over time some renaming takes place. The following functions and options have been deprecated in version 2.2. They are therefore
available in version 2.2, but should be replaced in new or updated documents with the successor names.

These options have been replaced by the options

- angle-unit-product
- inter-unit-product
- number-unit-product

as these items are formally products, and the new option names emphasise this.

The \DeclareSIUnitWithOptions function has been extended to take a first optional argument, which removes the need for \DeclareSIUnitWithOptions. This function is therefore depreciated but retained for compatibility.

8.3 Upgrading from version 2.2

The option load-configurations has been deprecated in favour of the three options abbreviations, binary-units and version-1-compatibility. At the same time, loading of the abbreviations is now the standard behaviour, and so in most cases no explicit configuration file loading will be needed.

The digit grouping options have been revised, and the options group-decimal-digits and group-integer-digits are now integrated into group-digits. At the same time, the group-four-digits option has been extended to the new option group-minimum-digits.

The new literal-superscript-as-power option means that the standard behaviour now uses the current math font for superscripts, even when units are printed literally. This will only be obvious in documents such as this manual, where the text and math mode numerals are (deliberately) different. To restore the previous behaviour, set literal-superscript-as-power = false.

9 Correct application of (SI) units

Consistent and logical units are a necessity for scientific work, and have applicability everywhere. Historically, a number of systems have been used for physical units. SI units were introduced by the Conférence Générale des Poids et Mesures (CGPM) in 1960. SI units are a coherent system based on seven base units, from which all other units may be derived.

At the same time, physical quantities with units are mathematical entities, and as such way that they are typeset is important. In mathematics, changes of type (such as using bold, italic, sans serif typeface and so on) convey information. This means that rules exist not only for the type of units to be used under the SI system, but also the way
they should appear in print. Advice on best practice has been made available by the National Institute of Standards and Technology (NIST) [2].

As befits an agreed international standard, the full rules are detailed. It is not appropriate to reproduce these in totality here; instead, a useful summary of the key points is provided. The full details are available from the Bureau International des Poids et Mesures [1].

siunitx takes account of the information given here, so far as is possible. Thus the package defaults follow the recommendations made for typesetting numbers and units. Spacing and so forth is handled in such a way as to make implementing the rules (relatively) easy.

9.1 Units

There are seven base SI units, listed in Table 1. Apart from the kilogram, these are defined in terms of a measurable physical quantity needing the definition alone. The base units have been chosen such that all physical quantities can be expressed using an appropriative combination of these units, needing no others and with no redundancy. The kilogram is slightly different from the other base units as it is still defined in terms of a ‘prototype’ held in Paris.

All other units within the SI system are regarded as ‘derived’ from the seven base units. At the most basic, all other SI units can be expressed as combinations of the base units. However, many units (listed in Tables 2 and 3) have a special name and symbol. Most of these units are simple combinations of one or more base units (raised to powers as appropriate). A small number of units derived from experimental data are allowed as SI units (Table 4).

A series of SI prefixes for decimal multiples and sub-multiples are provided, and can be used as modifiers for any SI unit (either base or derived units) with the exception of the kilogram. The prefixes are listed in Table 6. No space should be used between a prefix and the unit, and only a single prefix should be used. Even the degree Celsius can be given a prefix, for example 1 m°C.

It is important to note that the kilogram is the only SI unit with a prefix as part of its name and symbol. Only single prefix may be used, and so in the case of the kilogram prefix names are used with the unit name ‘gram’ and the prefix symbols are used with the unit symbol g. For example 1×10^{-6} kg = 1 mg.

The application of SI units is meant to provide a single set of units which ensure consistency and clarity across all areas. However, other units are common in many areas, and are not without merit. The units provided by siunitx by default do not include any of these; only units which are part of the SI set or are accepted for use with SI units are defined. However, several other sets of units can be loaded as optional modules. The binary prefixes and units (Table 22) are the most obvious example.

8Some base units need others defined first; there is therefore a required order of definition.
These are not part of the SI specifications, but the prefix names are derived from those in Table 6.

Other units are normally to be avoided where possible. SI units should, in the main, be preferred due to the advantages of clear definition and self-consistency this brings. However, there will probably always be a place for specialist or non-standard units. This is particularly true of units derived from basic physical constants.

There are also many areas where non-standard units are used so commonly that to do otherwise is difficult or impossible. For example, most synthetic chemists measure the pressure inside vacuum apparatus in mmHg, partly because the most common gauge for the task still uses a column of mercury metal. For these reasons, \texttt{siunitx} does define non-SI units.

\section*{9.2 Mathematical meaning}

As explained earlier, a number–unit combination is a single mathematical entity. This has implications for how both the number and the unit should be printed. Firstly, the two parts should not be separated: a quantity is a product of the number and the unit. With the exception of the symbols for plane angles (°, ′ and ″), the BIPM specifies either a space or half-height (centred) dot should be used \cite{1}.

A space for \texttt{\SI{10}{\percent}}\texttt{\textbackslash{}
and also for \texttt{\SI{100}{\degreeCelsius}}\texttt{\textbackslash{}
but not for \texttt{\ang{1.23}}.

A space for 10 \%
and also for 100 \degree C
but not for 1.23°.

The mathematical meaning of units also means that the shape, weight and family are important. Units are supposed to be typeset in an upright, medium weight serif font. Italic, bold and sans serif are all used mathematically to convey other meanings. The \texttt{siunitx} package defaults again follow this convention: any local settings are ignored, and uses the current upright serif math font. However, there are occasions where this may not be the most desirable behaviour. A classic example would be in an all-bold section heading. As the surrounding text is bold, some people feel that any units should follow this.

Units should \texttt{\textbf{not be bold: \SI{54}{\farad}}\texttt{\textbackslash{}
\textbf{But perhaps in a running block,\texttt{\textbackslash{}
it might look better: \SI{detect-weight}{54}{\farad}}

Units should \textbf{not be bold: 54 F}
\textbf{But perhaps in a running block,}
it might look better: 54 F

Symbols for units formed from other units by multiplication are indicated by means of either a half-height (that is, centred) dot or a (thin) space.
\(\si{\metre\second} = \text{metre second} \) \\\n\(\si{\milli\second} = \text{millisecond} \) \\\n\sisetup{inter-unit-product = { } \cdot { } } \\\n\(\si{\metre\second} = \text{metre second} \) \\\n\(\si{\milli\second} = \text{millisecond} \)

m s = metre second
ms = millisecond
m \cdot s = metre second
ms = millisecond

There are some circumstances under which it is common practice to omit any spaces. The classic example is kWh, where ‘kWh’ does not add any useful information. If using such a unit repeatedly, users of \texttt{siunitx} are advised to create a custom unit to ensure consistency. It is important to note that while this is common practice, it is not allowed by the BIPM [1].

Symbols for units formed from other units by division are indicated by means of a virgule (oblique stroke, slash, /), a horizontal line, or negative exponents.\footnote{Notice that a virgule and a solidus are not the same symbol.} However, to avoid ambiguity, the virgule must not be repeated on the same line unless parentheses are used. This is ensured when using named unit macros in \texttt{siunitx}, which will ‘trap’ repeated division and format it correctly. In complicated cases, negative exponents are to be preferred over other formats.

\begin{verbatim}
\si{\joule\per\mole\per\kelvin}\\\n\si[per-mode = fraction]{\joule\per\mole\per\kelvin}\\\n\si[per-mode = symbol]{\joule\per\mole\per\kelvin}
\end{verbatim}

\(\text{J mol}^{-1} \text{K}^{-1} \)
\(\text{J/(mol K)} \)

Products and errors should show what unit applies to each number given. Thus \((2 \times 3) \text{ m}\) is an ordered set of lengths of a geometric area, whereas \(2 \times 3 \text{ m}\) is a length (and equal to \(6 \text{ m}\)). Thus, \(\times\) is not a product but is a mathematical operator; in the same way, a \(2 \times 3\) matrix is not a \(6\) matrix! In some areas, areas and volumes are given with separated units but a unit raised to the appropriate power: \(2 \times 3 \text{ m}^2\). Although this does display the correct overall units, it is potentially-confusing and is not encouraged.

Care must be taken when writing ranges of numbers. For purely numerical values, it is common to use an en-dash to show a range, for example ‘see pages 1–5’. On the other hand, physical quantities could be misinterpreted as negative values if written in this way. As the unit-number combination is a single mathematical entity, writing the values with an en-dash followed by a single unit is also incorrect. As a result, using the word ‘to’ is strongly recommended.

1 m to 5 m long. \hspace{1cm} \SIrange{1}{5}{\metre} long.
Table 51: An example of table labelling.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Length/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1234</td>
</tr>
<tr>
<td>2</td>
<td>1.1425</td>
</tr>
<tr>
<td>3</td>
<td>1.7578</td>
</tr>
<tr>
<td>4</td>
<td>1.9560</td>
</tr>
</tbody>
</table>

9.3 Graphs and tables

In graphs and tables, repetition of the units following each entry or axis mark is confusing and repetitive. It is therefore best to place the unit in the label part of the information. Placing the unit in square brackets is common but mathematically poor.10 Much better is to show division of all quantities by the unit, which leaves the entries as unitless ratios. This is illustrated in Table 51 and Figure 1.

\begin{table}
\centering
\caption{An example of table labelling.}
\label{tab:xmpl:unitless}
\sisetup{
 table-number-alignment = center,
 table-figures-integer = 1,
 table-figures-decimal = 4
}
\begin{tabular}{cS}
\toprule
Entry & {Length/\text{\si{\metre}}} \\
\midrule
1 & 1.1234 \\
2 & 1.1425 \\
3 & 1.7578 \\
4 & 1.9560 \\
\bottomrule
\end{tabular}
\end{table}

\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
 xlabel = \text{t/\text{\si{\second}}},
 xmax = 6,
]
\end{axis}
\end{tikzpicture}
\end{figure}

10For example, for an acceleration a, the expression $[a]$ is the dimensions of a, i.e. length per time squared in this case.
In most cases, adding exponent values in the body of a table is less desirable than adding a fixed exponent to column headers. An example is shown in Table 52. The use of `\multicolumn` is needed here due to the ‘<’; without `\multicolumn`, the titles are followed by ‘kg’!
Table 52: Good and bad columns.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mass</th>
<th>Mass/(10^3) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.56 (\times) 10(^3) kg</td>
<td>4.56</td>
</tr>
<tr>
<td>2</td>
<td>2.40 (\times) 10(^3) kg</td>
<td>2.40</td>
</tr>
<tr>
<td>3</td>
<td>1.345 (\times) 10(^4) kg</td>
<td>13.45</td>
</tr>
<tr>
<td>4</td>
<td>4.5 (\times) 10(^2) kg</td>
<td>0.45</td>
</tr>
</tbody>
</table>

10 Making suggestions and reporting bugs

Feedback on \texttt{siunitx} is always welcome, either to make suggestions or to report problems. When sending feedback, it is always useful if a small example file is included, showing the bug being reported or illustrating the desired output. It is helpful if a ‘reference rendering’ is included, showing what the output should look like. A typical example file might read
As illustrated, it is usually best to use the `article` class and to only load packages which are needed to show the issue. It is also useful to include a copy of the log file generated by Te\TeX when reporting a bug (as the versions of packages can be important to solving the issue).

Feedback can be sent in a range of ways. The development code is hosted by BitBucket, and the site includes an issue tracker. Adding feedback directly to the database means that other users can see it, and also ensures that it does not get forgotten. E-mailing directly will also definitely get attention: joseph.wright@morningstar2.co.uk. I also keep an eye on various groups, for example comp.text.tex and The \LaTeX Community. Sometimes I miss posts to these places, so it’s useful if you also e-mail me pointing to the appropriate thread.

\section{Thanks}

Many users have provided feedback, bug reports and ideas for new features for \texttt{siunitx}: thanks to all of them. Particular thanks to Stefan Pinnow, who has taken the lead role as beta tester for \texttt{siunitx}, finding incorrect output, bad documentation and the odd spelling mistake in the documentation. Thanks also to Danie Els and Marcel Heldoorn for the \texttt{SIstyle} and \texttt{SIunits} packages, respectively, which provided the starting point for the development of \texttt{siunitx}.

\section*{References}

Change History

v0.6
 General: First public testing release (as si) 1

v1.0
 General: First official release 1

v1.1
 General: Package extended to a greater range of unit types 1

v1.2
 General: Correct handling for ranges of numbers added 1

v1.3
 General: Better definition for micro symbol 1

v1.4
 General: Detect entire document in non-serif font 1

v2.0
 General: Complete re-write of package to add many new features 1
 Introduced \numlist and \SIlist functions 5

v2.0a
 General: Detect use of version 1 options and automatically load appropriate configuration file 72
 Fix various errors in version-1 configuration file 72

 Include high energy physics units in discussion of old configurations and in version-1 configuration file 72
 Make \SendSettingsToPgf available in document body 68

v2.0b
 General: Further improvements to version-1 configuration file ... 72

v2.0c
 General: Mixed literal and macro units now print more reliably 1

v2.0d
 General: Document special case situations for last cell in table row 69
 Fix error in table-format option concerning exponent signs 1

v2.0e
 General: Correct behaviour of \pm in numbers when abbreviations configuration is loaded: problem introduced in v2.0c 1

v2.0f
 General: Fix issue with spacing of multiplication sign in text mode 1

v2.0g
 General: Fix issue with complex numbers in quotients 1
 Improve handling of complex root token 1
Introduce localisation for text values
Repair broken \text{bracket-numbers} option .. 1

\text{v2.0h}
General: Actually get localisation into the code 1

\text{v2.0i}
General: Correct behaviour of \text{of} function so it actually works (bug introduced in v2.0d) .. 10

\text{v2.0j}
General: Correct \text{hartree} unit appearance 8
Ensure symbols specified in input-symbols are always printed in math mode .. 1

\text{v2.0k}
General: Fix for \text{babel} French settings with \text{fg} in tabular material 1

\text{v2.0l}
General: Further adjustments to \text{babel} support 1

\text{v2.0m}
General: Re-introduce locale option ... 61

\text{v2.0n}
General: More abbreviated units ... 34

\text{v2.0o}
General: Extend \text{detect-italic} option to other shapes, renaming as \text{detect-shape} as a result .. 17

\text{v2.0p}
General: Actually get change from v2.00 working 1

\text{v2.0q}
General: Deal with bad definition of \text{color} by \text{texpos} package 1
Errors with free-standing unit code fixed .. 1

\text{v2.0r}
General: Error in definition for old \text{decimalsymbol} option corrected 72

\text{v2.0s}
General: Correct errors in rounding code when precision requested is zero decimal places .. 1
Document how to do mixed bold and normal numbers in tables 71

\text{v2.0t}
General: Replace \text{exp_after:wN} in code for \text{per} with \text{exp_after:wN} 1

\text{v2.0u}
General: Fix second possible issue with \text{texpos} package and \text{color} 1
Prevent infinite loop if \text{SI} function is used with an empty number 1

\text{v2.0v}
General: Internal changes reflecting \text{expl3} updates 1

\text{v2.0w}
General: Deal with internal function used by \text{REV\LaTeX} in tables 1

\text{v2.0x}
General: Fix bug when detecting single prefixes and converting prefixes to numbers .. 1

\text{v2.0y}
General: Error with \text{tight-spacing} option and exponents corrected 30

\text{v2.1}
General: New \text{copy-complex-root} option for moving input complex root to output .. 27
New \text{input-comparators} option for numbers greater than, less than and so on .. 20
New \text{power-font} option for controlling whether superscript powers are treated as numbers or units 41
New \text{round-integer-to-decimal} option to convert integers to decimals on rounding .. 23
New \text{round-minimum} option to set a floor for rounding numbers downward .. 23
New \text{scientific-notation} option for to use exponent form for numbers in all cases .. 25
New \text{table-align-exponent} and \text{table-align-uncertainty} options for additional choices of table formatting .. 52
New \text{table-comparator} option for reserving space for comparators in tables .. 49
New \text{table-omit-exponent} option for simplifying tables 54

\text{v2.1a}
General: Ensure that output of list separators is in text mode 1

\text{90}
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v2.1a</td>
<td>Print prefixes correctly in text mode when converting to numerical value</td>
</tr>
<tr>
<td>v2.1b</td>
<td>Bug in hyphen printing when detecting mode sorted</td>
</tr>
<tr>
<td>v2.1c</td>
<td>Bug in printing code for complex part with no number fixed</td>
</tr>
<tr>
<td></td>
<td>General: After reviewing internals, \texttt{numlist}, \texttt{numrange}, \texttt{SIList} and \texttt{SIrange} are documented as requiring text mode due to issues with spacing and line breaks</td>
</tr>
<tr>
<td></td>
<td>Auto-detect math mode in tables and correct output accordingly</td>
</tr>
<tr>
<td></td>
<td>Discourage line break between number and unit even when it is permitted</td>
</tr>
<tr>
<td></td>
<td>General: New text choice for qualifier-mode option</td>
</tr>
<tr>
<td>v2.1d</td>
<td>Apply unit options when \texttt{free-standing-units} is active</td>
</tr>
<tr>
<td></td>
<td>Error with definition of version 1 option xspace corrected</td>
</tr>
<tr>
<td>v2.1e</td>
<td>Fix issues with text mode symbols and \texttt{fontspec} package</td>
</tr>
<tr>
<td></td>
<td>Further corrections when applying unit options when \texttt{free-standing-units} is active</td>
</tr>
<tr>
<td>v2.1f</td>
<td>General: Typos in definition for unit-optional-argument implementation corrected</td>
</tr>
<tr>
<td>v2.1g</td>
<td>Checks on the versions of \texttt{expl3} and \texttt{xparse} installed</td>
</tr>
<tr>
<td>v2.1h</td>
<td>General: Detect AMS display-like environments</td>
</tr>
<tr>
<td></td>
<td>General: Improved logic for \texttt{per-mode} setting symbol-or-fraction</td>
</tr>
<tr>
<td>v2.1j</td>
<td>General: Allow for loading of \texttt{inputenc} package with no options</td>
</tr>
<tr>
<td>v2.1k</td>
<td>General: Bug fix when printing superscript minus signs and using \texttt{fontspec} package</td>
</tr>
<tr>
<td></td>
<td>New option \texttt{detect-inline-family}</td>
</tr>
<tr>
<td></td>
<td>Remove combined choice for option \texttt{detect-inline-weight}</td>
</tr>
<tr>
<td>v2.1l</td>
<td>General: Error in font family detection introduced in v2.1k corrected</td>
</tr>
<tr>
<td>v2.1m</td>
<td>General: Avoid expansion of erroneous literal units when these are forbidden</td>
</tr>
<tr>
<td></td>
<td>Ensure some output occurs in all cases when \texttt{round-precision} is set to 0 and \texttt{round-mode} is set to \texttt{places}</td>
</tr>
<tr>
<td>v2.1n</td>
<td>General: Consistent behaviour for \texttt{round-integer-to-decimal} when \texttt{round-precision} is 0</td>
</tr>
<tr>
<td></td>
<td>Set output to 0 when \texttt{round-mode} is \texttt{figures} and \texttt{round-precision} is 0</td>
</tr>
<tr>
<td>v2.1o</td>
<td>General: Account for negative exponents when using \texttt{fixed-exponent} system</td>
</tr>
<tr>
<td></td>
<td>Fix incorrect font choice when \texttt{arev} package is loaded</td>
</tr>
<tr>
<td>v2.1p</td>
<td>General: Bad table alignment when some rows contain comparators fixed</td>
</tr>
<tr>
<td></td>
<td>Poor position of comparators in numbers fixed</td>
</tr>
<tr>
<td>v2.2</td>
<td>General: Add new \texttt{\tablename} macro to allow complex table alignments</td>
</tr>
<tr>
<td></td>
<td>Deprecate \texttt{\textbackslash DeclareSIUnitWithOptions}</td>
</tr>
<tr>
<td></td>
<td>Extend \texttt{\textbackslash DeclareSIUnit} to take optional argument</td>
</tr>
<tr>
<td></td>
<td>Extend \texttt{\textbackslash scientific-notation} option to include engineering mode</td>
</tr>
<tr>
<td></td>
<td>Include leading 1 when \texttt{per-mode} is set to \texttt{symbol} and there are no numerator units in \texttt{\textbackslash si} arguments</td>
</tr>
<tr>
<td></td>
<td>New \texttt{\textbackslash highlight} macro for selective colour in units</td>
</tr>
</tbody>
</table>
New \textit{bracket-negative-numbers} option 29
New \textit{input-uncertainty-signs} option 21
New \textit{minimum-integer-digits} option 24
New \textit{output-exponent-marker} option 28
New \textit{table-align-comparator} option for more control of table formatting 52
New \textit{table-column-width} option 59
Renamed \textit{angle-unit-separator} option to \textit{angle-unit-product} 77
Renamed \textit{inter-unit-separator} option to \textit{inter-unit-product} 77
Renamed \textit{number-unit-separator} option to \textit{number-unit-product} 77
Support use of \texttt{\cancel} macro in units 10

\textbf{v2.2a}

General: Add missing default for \textit{group-digits} option 25
Expand macros with arguments correctly in tables 1
Fix bug with literal units and auto-insertion of 1 when \textit{per-mode} is symbol 1
Fix issue with \texttt{*} tokens in tabular preambles 1
Group digits for input containing symbolic entries 1
Insert tokens correctly when last tabular cell does not end \ 1

\textbf{v2.2b}

General: Fix bad formatting of negative exponents when using the \textit{output-exponent-marker} option 1
Fix bug with \texttt{\highlight} macro when no colour support is loaded 1
Make \texttt{\of} work in hyper-linked sections 1

\textbf{v2.2c}

General: Fix bad interaction with \textit{cell-space} package 1

\textbf{v2.2d}

General: Fix the \textit{strict} option 1

\textbf{v2.2e}

General: Fix incorrect interpretation of complex numbers with no real part 1

\textbf{v2.2f}

General: Fix setting \textit{table-column-width} to 0 pt to restore auto-sizing 59

\textbf{v2.2g}

General: Correctly space \texttt{\degree} and similar units in lists and ranges when only a single unit is given 1
Ensure \texttt{\tablenum} works correctly when \texttt{parse-numbers} is set \texttt{false} 13

\textbf{v2.2h}

General: Fix bug in significant figures rounding code for some integer part values 1

\textbf{v2.2i}

General: Fix \textit{detect-mode} option inside table cells 1

\textbf{v2.2j}

General: Fix incorrect line breaking in \texttt{\SIrange} 1

\textbf{v2.2k}

General: Fix behaviour of subscripts inside alignments when printing in text mode 1

\textbf{v2.2l}

General: Fix loss of main unit when \textit{per-mode} is set to \textit{symbol} and a pre-unit is used 1

\textbf{v2.3}

General: Extend \textit{group-digits} option, deprecating \textit{group-decimal-digits} and \textit{group-integer-digits} 25
Load abbreviations as standard 78
New \textit{group-minimum-digits} option to replace \textit{group-four-digits} 27
New \textit{literal-superscript-as-power} option for controlling how literal units superscripts behave 42
New \textit{table-align-text-pre} option 54
New implementation for alignment in \texttt{S} column 1
Replace \textit{load-configurations} option with separate abbreviations, \textit{binary-units} and \textit{version-1-compatibility} options 78
v2.3a
General: Restore fix in v2.2l missing in
v2.3 1

v2.3b
General: Adjust internal load order so
that free-standing-units works
correctly for abbreviations 1
More abbreviated units 34

v2.3c
General: Fix display of ± in num-
ders when separate-uncertainty
is true and literal units are used 1

v2.3d
General: Fix broken superscript display
in literal unit mode 1

v2.3e
General: Internal changes to work with
\TeX updates 1

v2.3f
General: Fix processing of numbers in
tables when entire number is in-
valid 1

Index

The italic numbers denote the pages where the corresponding entry is described, num-
bers underlined point to the definition, all others indicate the places where it is used.

A
\A ... 38
abbreviations (option) 36
add-arc-degree-zero (option) 35
add-arc-minute-zero (option) 35
add-arc-second-zero (option) 35
add-decimal-zero (option) 25
add-integer-zero (option) 25
allow-number-unit-breaks (option) ... 45
\ampere 9
\amu 37
\ang 7
angle-symbol-over-decimal (option) ... 35
angle-unit-separator (option) 80
\angstrom 11
arc-separator (option) 35
\arcminute 10
\arcsecond 10
\as 37
\astronomicalunit 10
\atomicmassunit 10
\atto 11
\bar 11
\barn 11
\becquerel 10
\bel 11
binary-units (option) 39
\bit 39
\bohr 10
bracket-negative-numbers (option) 31
bracket-numbers (option) 31
bracket-unit-denominator (option) ... 42
\byte 39

C
\cancel 12
\candela 9
\celsius 9
\centi 11
\clight 10
\close-bracket (option) 31
\cm 37
color (option) 21
complex-root-position (option) 30
copy-complex-root (option) 29
copy-decimal-marker (option) 29
\coulomb 10
\cubed 11
\cubic 11

B
dalton 10
day 10
\dB 39
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-arc-minute-zero</td>
<td>35</td>
</tr>
<tr>
<td>add-arc-second-zero</td>
<td>35</td>
</tr>
<tr>
<td>add-decimal-zero</td>
<td>25</td>
</tr>
<tr>
<td>add-integer-zero</td>
<td>25</td>
</tr>
<tr>
<td>allow-number-unit-breaks</td>
<td>45</td>
</tr>
<tr>
<td>angle-symbol-over-decimal</td>
<td>35</td>
</tr>
<tr>
<td>angle-unit-separator</td>
<td>80</td>
</tr>
<tr>
<td>arc-separator</td>
<td>35</td>
</tr>
<tr>
<td>binary-units</td>
<td>39</td>
</tr>
<tr>
<td>bracket-negative-numbers</td>
<td>31</td>
</tr>
<tr>
<td>bracket-numbers</td>
<td>31</td>
</tr>
<tr>
<td>bracket-unit-denominator</td>
<td>42</td>
</tr>
<tr>
<td>close-bracket</td>
<td>31</td>
</tr>
<tr>
<td>color</td>
<td>21</td>
</tr>
<tr>
<td>complex-root-position</td>
<td>30</td>
</tr>
<tr>
<td>copy-complex-root</td>
<td>29</td>
</tr>
<tr>
<td>copy-decimal-marker</td>
<td>29</td>
</tr>
<tr>
<td>detect-all</td>
<td>19</td>
</tr>
<tr>
<td>detect-display-math</td>
<td>20</td>
</tr>
<tr>
<td>detect-family</td>
<td>19</td>
</tr>
<tr>
<td>detect-inline-family</td>
<td>19</td>
</tr>
<tr>
<td>detect-inline-weight</td>
<td>19</td>
</tr>
<tr>
<td>detect-mode</td>
<td>19</td>
</tr>
<tr>
<td>detect-none</td>
<td>19</td>
</tr>
<tr>
<td>detect-shape</td>
<td>19</td>
</tr>
<tr>
<td>detect-weight</td>
<td>19</td>
</tr>
<tr>
<td>explicit-sign</td>
<td>26</td>
</tr>
<tr>
<td>exponent-base</td>
<td>30</td>
</tr>
<tr>
<td>exponent-product</td>
<td>30</td>
</tr>
<tr>
<td>fixed-exponent</td>
<td>27</td>
</tr>
<tr>
<td>forbid-literal-units</td>
<td>41</td>
</tr>
<tr>
<td>fraction-function</td>
<td>33</td>
</tr>
<tr>
<td>free-standign-units</td>
<td>36</td>
</tr>
<tr>
<td>group-decimal-digits</td>
<td>80</td>
</tr>
<tr>
<td>group-digits</td>
<td>27</td>
</tr>
<tr>
<td>group-four-digits</td>
<td>27,80</td>
</tr>
<tr>
<td>group-integer-digits</td>
<td>80</td>
</tr>
<tr>
<td>group-minimum-digits</td>
<td>29</td>
</tr>
<tr>
<td>group-separator</td>
<td>27</td>
</tr>
<tr>
<td>input-close-uncertainty</td>
<td>23</td>
</tr>
<tr>
<td>input-comparators</td>
<td>22</td>
</tr>
<tr>
<td>input-complex-roots</td>
<td>23</td>
</tr>
<tr>
<td>input-decimal-markers</td>
<td>22</td>
</tr>
<tr>
<td>input-digits</td>
<td>22</td>
</tr>
<tr>
<td>input-exponent-markers</td>
<td>22</td>
</tr>
<tr>
<td>input-ignore</td>
<td>22</td>
</tr>
<tr>
<td>input-open-uncertainty</td>
<td>23</td>
</tr>
<tr>
<td>input-product</td>
<td>32</td>
</tr>
<tr>
<td>input-protect-tokens</td>
<td>23</td>
</tr>
<tr>
<td>input-quotient</td>
<td>32</td>
</tr>
<tr>
<td>input-signs</td>
<td>22</td>
</tr>
<tr>
<td>input-symbols</td>
<td>22</td>
</tr>
<tr>
<td>input-uncertainty-signs</td>
<td>23</td>
</tr>
<tr>
<td>inter-unit-product</td>
<td>41</td>
</tr>
<tr>
<td>inter-unit-separator</td>
<td>80</td>
</tr>
<tr>
<td>list-final-separator</td>
<td>33</td>
</tr>
<tr>
<td>list-separator</td>
<td>33</td>
</tr>
<tr>
<td>list-units</td>
<td>47</td>
</tr>
<tr>
<td>literal-superscript-as-power</td>
<td>44,80</td>
</tr>
<tr>
<td>load-configurations</td>
<td>80</td>
</tr>
<tr>
<td>locale</td>
<td>63</td>
</tr>
<tr>
<td>math-rm</td>
<td>21</td>
</tr>
<tr>
<td>math-sf</td>
<td>21</td>
</tr>
<tr>
<td>math-tt</td>
<td>21</td>
</tr>
<tr>
<td>minimum-integer-digits</td>
<td>26</td>
</tr>
<tr>
<td>mode</td>
<td>21</td>
</tr>
<tr>
<td>multi-part-units</td>
<td>46</td>
</tr>
<tr>
<td>negative-color</td>
<td>31</td>
</tr>
<tr>
<td>number-angle-product</td>
<td>34</td>
</tr>
<tr>
<td>number-unit-product</td>
<td>45</td>
</tr>
<tr>
<td>number-unit-separator</td>
<td>80</td>
</tr>
<tr>
<td>number-unit-selector</td>
<td></td>
</tr>
<tr>
<td>output-close-uncertainty</td>
<td>31</td>
</tr>
<tr>
<td>output-complex-root</td>
<td>29</td>
</tr>
<tr>
<td>output-decimal-marker</td>
<td>29</td>
</tr>
<tr>
<td>output-exponent-marker</td>
<td>30</td>
</tr>
<tr>
<td>output-open-uncertainty</td>
<td>30</td>
</tr>
<tr>
<td>output-product</td>
<td>32</td>
</tr>
<tr>
<td>output-quotient</td>
<td>32</td>
</tr>
<tr>
<td>overwrite-functions</td>
<td>36</td>
</tr>
<tr>
<td>parse-numbers</td>
<td>24,58</td>
</tr>
<tr>
<td>parse-units</td>
<td>45</td>
</tr>
<tr>
<td>per-mode</td>
<td>42</td>
</tr>
<tr>
<td>per-symbol</td>
<td>42</td>
</tr>
<tr>
<td>power-font</td>
<td>43</td>
</tr>
<tr>
<td>prefixes-as-symbols</td>
<td>44</td>
</tr>
<tr>
<td>product-units</td>
<td>46</td>
</tr>
<tr>
<td>qualifier-mode</td>
<td>44</td>
</tr>
<tr>
<td>quotient-mode</td>
<td>33</td>
</tr>
<tr>
<td>range-phrase</td>
<td>34</td>
</tr>
<tr>
<td>range-units</td>
<td>47</td>
</tr>
<tr>
<td>redefine-symbols</td>
<td>63</td>
</tr>
<tr>
<td>retain-explicit-plus</td>
<td>26</td>
</tr>
<tr>
<td>retain-unity-mantissa</td>
<td>26</td>
</tr>
<tr>
<td>retain-zero-exponent</td>
<td>26</td>
</tr>
<tr>
<td>round-integer-to-decimal</td>
<td>25</td>
</tr>
<tr>
<td>round-minimum</td>
<td>25</td>
</tr>
<tr>
<td>round-mode</td>
<td>24</td>
</tr>
<tr>
<td>round-precision</td>
<td>24</td>
</tr>
<tr>
<td>scientific-notation</td>
<td>27</td>
</tr>
</tbody>
</table>